Contact of Thin Biphasic Layers

  • Ivan ArgatovEmail author
  • Gennady Mishuris
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 50)


In Sect. 6.1, a three-dimensional deformation problem for an articular cartilage layer is studied in the framework of the linear biphasic model. The articular cartilage bonded to subchondral bone is modeled as a transversely isotropic biphasic material consisting of a solid phase and a fluid phase. In Sect. 6.2, the same problem is reconsidered with the effect of inherent viscoelasticity of the solid matrix taken into account. The frictionless unilateral contact problem for the articular cartilage layers is considered in Sect. 6.3. It is assumed that the subchondral bones are rigid and shaped like elliptic paraboloids. The obtained short-time leading-order asymptotic solution is valid for monotonically increasing loading conditions.


Subchondral Bone Solid Matrix Creep Compliance Deformation Problem Asymptotic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Argatov, I., Mishuris, G.: Axisymmetric contact problem for a biphasic cartilage layer with allowance for tangential displacements on the contact surface. Eur. J. Mech. A/Solids 29, 1051–1064 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Argatov, I., Mishuris, G.: Elliptical contact of thin biphasic cartilage layers: exact solution for monotonic loading. J. Biomech. 44, 759–761 (2011)CrossRefGoogle Scholar
  3. 3.
    Argatov, I., Mishuris, G.: Frictionless elliptical contact of thin viscoelastic layers bonded to rigid substrates. Appl. Math. Model. 35, 3201–3212 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Argatov, I.I., Mishuris, G.S.: An asymptotic model for a thin biphasic poroviscoelastic layer. Quart. J. Mech. Appl. Math. (2015). doi: 10.1093/qjmam/hbv008 Google Scholar
  5. 5.
    Ateshian, G.A., Wang, H.: A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. J. Biomech. 28, 1341–1355 (1995)CrossRefGoogle Scholar
  6. 6.
    Ateshian, G.A., Maas, S., Weiss, J.A.: Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J. Biomech. Eng. 132, 061006 (13 pages) (2010)Google Scholar
  7. 7.
    Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)CrossRefGoogle Scholar
  8. 8.
    Barry, S.I., Holmes, M.: Asymptotic behaviour of thin poroelastic layers. IMA J. Appl. Math. 66, 175–194 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Donzelli, P.S., Spilker, R.L., Ateshian, G.A., Mow, V.C.: Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. J. Biomech. 32, 1037–1047 (1999)CrossRefGoogle Scholar
  10. 10.
    Dortmans, L.J.M.G., van de Ven, A.A.F., Sauren, A.A.H.J.: A note on the reduced creep function corresponding to the quasi-linear visco-elastic model proposed by Fung. J. Biomech. Eng. 116, 373–375 (1994)CrossRefGoogle Scholar
  11. 11.
    Eberhardt, A.W., Keer, L.M., Lewis, J.L., Vithoontien, V.: An analytical model of joint contact. J. Biomech. Eng. 112, 407–413 (1990)CrossRefGoogle Scholar
  12. 12.
    Eberhardt, A.W., Keer, L.M., Lewis, J.L.: Normal contact of elastic spheres with two elastic layers as a model of joint articulation. J. Biomech. Eng. 113, 410–417 (1991)CrossRefGoogle Scholar
  13. 13.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)CrossRefGoogle Scholar
  14. 14.
    Han, S.K., Federico, S., Epstein, M., Herzog, W.: An articular cartilage contact model based on real surface geometry. J. Biomech. 38, 179–184 (2005)CrossRefGoogle Scholar
  15. 15.
    Hlaváček, M.: A note on an asymptotic solution for the contact of two biphasic cartilage layers in a loaded synovial joint at rest. J. Biomech. 32, 987–991 (1999)CrossRefGoogle Scholar
  16. 16.
    Hlaváček, M.: Frictionless contact of two parallel congruent rigid cylindrical surfaces coated with thin elastic incompressible transversely isotropic layers: an analytic solution. Eur. J. Mech. A/Solids 25, 497–508 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kelkar, R., Ateshian, G.A.: Contact creep of biphasic cartilage layers. J. Appl. Mech. 66, 137–145 (1999)CrossRefGoogle Scholar
  19. 19.
    Lavrentyev, M.A., Shabat, B.V.: Methods of Complex Variable Functions. Nauka, Moscow (1987) (in Russian)Google Scholar
  20. 20.
    LePage, W.R.: Complex Variables and the Laplace Transform for Engineers. McGraw-Hill, New York (1961)zbMATHGoogle Scholar
  21. 21.
    Li, G., Sakamoto, M., Chao, E.Y.S.: A comparison of different methods in predicting static pressure distribution in articulating joints. J. Biomech. 30, 635–638 (1997)CrossRefGoogle Scholar
  22. 22.
    Mishuris, G., Argatov, I.: Exact solution to a refined contact problem for biphasic cartilage layers. In: Nithiarasu, P., Löhner, R. (eds.) Proceedings of the 1st International Conference on Mathematical and Computational Biomedical Engineering—CMBE2009, pp. 151–154. Swansea, June 29–July 1 2009Google Scholar
  23. 23.
    Wu, J.Z., Herzog, W.: On the pressure gradient boundary condition for the contact of two biphasic cartilage layers. J. Biomech. 33, 1331–1332 (2000)CrossRefGoogle Scholar
  24. 24.
    Wu, J.Z., Herzog, W., Ronsky, J.: Modeling axi-symmetrical joint contact with biphasic cartilage layers—an asymptotic solution. J. Biomech. 29, 1263–1281 (1996)CrossRefGoogle Scholar
  25. 25.
    Wu, J.Z., Herzog, W., Epstein, M.: An improved solution for the contact of two biphasic cartilage layers. J. Biomech. 30, 371–375 (1997)CrossRefGoogle Scholar
  26. 26.
    Wu, J.Z., Herzog, W., Epstein, M.: Joint contact mechanics in the early stages of osteoarthritis. Med. Eng. Phys. 22, 1–12 (2000)CrossRefGoogle Scholar
  27. 27.
    Yang, T., Spilker, R.L.: A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues. J. Biomech. Eng. 129, 457–471 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsAberystwyth UniversityAberystwythUK

Personalised recommendations