Advertisement

Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer

  • Ivan ArgatovEmail author
  • Gennady Mishuris
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 50)

Abstract

In Sect. 5.1, we develop a linear biphasic theory for the case of a transversely isotropic elastic solid matrix with transverse isotropy of permeability. In Sects. 5.2 and 5.3, we consider the linear biphasic models of confined and unconfined compression, respectively, for the biphasic stress relaxation and the biphasic creep tests. Finally, in Sect. 5.4 we outline the biphasic poroviscoelastic model, which accounts for the inherent viscoelasticity of the solid matrix.

References

  1. 1.
    Appleyard, R.C., Swain, M.V., Khanna, S., Murrell, G.A.C.: The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys. Med. Biol. 46, 541–550 (2001)CrossRefGoogle Scholar
  2. 2.
    Argatov, I.: Sinusoidally-driven flat-ended indentation of time-dependent materials: Asymptotic models for low and high rate loading. Mech. Mater. 48, 56–70 (2012)CrossRefGoogle Scholar
  3. 3.
    Argatov, I.: Sinusoidally-driven unconfined compression test for a biphasic tissue. arXiv preprint arXiv:1207.4679 (2012)
  4. 4.
    Argatov, I., Daniels, A.U., Mishuris, G., Ronken, S., Wirz, D.: Accounting for the thickness effect in dynamic spherical indentation of a viscoelastic layer: application to non-destructive testing of articular cartilage. Eur. J. Mech. A/Solids 37, 304–317 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Armstrong, C.G., Lai, W.M., Mow, V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165–173 (1984)CrossRefGoogle Scholar
  6. 6.
    Ateshian, G.A., Ellis, B.J., Weiss, J.A.: Equivalence between short-time biphasic and incompressible elastic material responses. J. Biomech. Eng. 129, 405–412 (2007)CrossRefGoogle Scholar
  7. 7.
    Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)CrossRefGoogle Scholar
  8. 8.
    Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Mow, V.C.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30, 1157–1164 (1997)CrossRefGoogle Scholar
  9. 9.
    Barry, S.I., Aldis, G.K.: Comparison of models for flow induced deformation of soft biological tissue. J. Biomech. 23, 647–654 (1990)CrossRefGoogle Scholar
  10. 10.
    Barry, S.I., Holmes, M.: Asymptotic behaviour of thin poroelastic layers. IMA J. Appl. Math. 66, 175–194 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Barry, S.I., Mercer, G.N.: Flow and deformation in poroelasticity—i unusual exact solutions. Math. Comp. Model. 30, 23–29 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Biot, M.A.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21, 597–620 (1972)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Boschetti, F., Pennati, G., Gervaso, F., Peretti, G.M., Dubini, G.: Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41, 159–166 (2004)Google Scholar
  14. 14.
    Buschmann, M.D.: Numerical conversion of transient to harmonic response functions for linear viscoelastic materials. J. Biomech. 30, 197–202 (1997)CrossRefGoogle Scholar
  15. 15.
    Chen, A.C., Klisch, S.M., Bae, W.C., Temple, M.M., McGowan, K.B., Gratz, K.R., Schumacher, B.L., Sah, R.L.: Mechanical characterization of native and tissue-engineered cartilage. In: de Ceuninck, F., Sabatini, M., Pastoureau, Ph (eds.) Cartilage and Osteoarthritis, pp. 157–190. Humana Press, Totowa, NJ (2004)Google Scholar
  16. 16.
    Chen, X., Dunn, A.C., Sawyer, W.G., Sarntinoranont, M.: A biphasic model for micro-indentation of a hydrogel-based contact lens. J. Biomech. Eng. 129, 156–163 (2007)CrossRefGoogle Scholar
  17. 17.
    Chin, H.C., Khayat, G., Quinn, T.M.: Improved characterization of cartilage mechanical properties using a combination of stress relaxation and creep. J. Biomech. 44, 198–201 (2011)CrossRefGoogle Scholar
  18. 18.
    Cohen, N.P., Foster, R.J., Mow, V.C.: Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203–215 (1998)CrossRefGoogle Scholar
  19. 19.
    Cohen, B., Lai, W.M., Mow, V.C.: A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J. Biomech. Eng. 120, 491–496 (1998)CrossRefGoogle Scholar
  20. 20.
    Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)CrossRefGoogle Scholar
  21. 21.
    DiSilvestro, M.R., Suh, J.-K.F.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519–525 (2001)CrossRefGoogle Scholar
  22. 22.
    Dortmans, L.J.M.G., van de Ven, A.A.F., Sauren, A.A.H.J.: A note on the reduced creep function corresponding to the quasi-linear visco-elastic model proposed by Fung. J. Biomech. Eng. 116, 373–375 (1994)CrossRefGoogle Scholar
  23. 23.
    Eberhardt, A.W., Keer, L.M., Lewis, J.L., Vithoontien, V.: An analytical model of joint contact. J. Biomech. Eng. 112, 407–413 (1990)CrossRefGoogle Scholar
  24. 24.
    Ehlers, W., Markert, B.: On the viscoelastic behaviour of fluid-saturated porous materials. Granular Matter 2, 153–161 (2000)CrossRefGoogle Scholar
  25. 25.
    Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008)Google Scholar
  26. 26.
    Federico, S., Grillo, A., Giaquinta, G., Herzog, W.: A semi-analytical solution for the confined compression of hydrated soft tissue. Meccanica 44, 197–205 (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    Freutel, M., Schmidt, H., Dürselen, L., Ignatius, A., Galbusera, F.: Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29, 363–372 (2014)CrossRefGoogle Scholar
  28. 28.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York (1981)Google Scholar
  29. 29.
    Garcia, J.J., Altiero, N.J., Haut, R.C.: An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J. Biomech. Eng. 120, 608–613 (1998)CrossRefGoogle Scholar
  30. 30.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, New York (1980)Google Scholar
  31. 31.
    Gu, W.Y., Lai, W.M., Mow, V.C.: A mixture theory for charged hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120, 169–180 (1998)CrossRefGoogle Scholar
  32. 32.
    Hatami-Marbini, H., Etebu, E.: An experimental and theoretical analysis of unconfined compression of corneal stroma. J. Biomech. 46, 1752–1758 (2013)CrossRefGoogle Scholar
  33. 33.
    Higginson, G.R., Litchfield, M.R., Snaith, J.: Load-deformation-time characteristics of articular cartilage. Int. J. mech. Sci. 18, 481–486 (1976)CrossRefGoogle Scholar
  34. 34.
    Hoang, S.K., Abousleiman, Y.N.: Poroviscoelasticity of transversely isotropic cylinders under laboratory loading conditions. Mech. Res. Commun. 37, 298–306 (2010)zbMATHCrossRefGoogle Scholar
  35. 35.
    Hou, J.S., Mow, V.C., Lai, W.M., Holmes, M.H.: An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 25, 247–259 (1992)CrossRefGoogle Scholar
  36. 36.
    Huang, C.-Y., Mow, V.C., Ateshian, G.A.: The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123, 410–417 (2001)CrossRefGoogle Scholar
  37. 37.
    Huyghe, J.M., Janssen, J.D.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35, 793–802 (1997)zbMATHCrossRefGoogle Scholar
  38. 38.
    Iatridis, J.C., Setton, L.A., Weidenbaum, M., Mow, V.C.: The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J. Biomech. 30, 1005–1013 (1997)Google Scholar
  39. 39.
    Itskov, M., Aksel, N.: Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials. Acta Mech. 157, 81–96 (2002)zbMATHCrossRefGoogle Scholar
  40. 40.
    Johnson, M., Tarbell, J.M.: A biphasic, anisotropic model of the aortic wall. J. Biomech. Eng. 123, 52–57 (2000)CrossRefGoogle Scholar
  41. 41.
    Knecht, S., Vanwanseele, B., Stüssi, E.: A review on the mechanical quality of articular cartilage—Implications for the diagnosis of osteoarthritis. Clin. Biomech. 21, 999–1012 (2006)CrossRefGoogle Scholar
  42. 42.
    Kluge, J.A., Rosiello, N.C., Leisk, G.G., Kaplan, D.L., Dorfmann, A.L.: The consolidation behavior of silk hydrogels. J. Mech. Behav. Biomed. Mater. 3, 278–289 (2010)CrossRefGoogle Scholar
  43. 43.
    Korhonen, R.K., Laasanen, M.S.: Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.J., Jurvelin, J.S.: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002)Google Scholar
  44. 44.
    Lai, W.M., Mow, V.C.: Drug-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111–123 (1980)Google Scholar
  45. 45.
    Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformational behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRefGoogle Scholar
  46. 46.
    Lavrentyev, M.A., Shabat, B.V.: Methods of Complex Variable Functions. Nauka, Moscow (1987) (in Russian)Google Scholar
  47. 47.
    Leipzig, N.D., Athanasiou, K.A.: Unconfined creep compression of chondrocytes. J. Biomech. 38, 77–85 (2005)CrossRefGoogle Scholar
  48. 48.
    LePage, W.R.: Complex Variables and the Laplace Transform for Engineers. McGraw-Hill, New York (1961)Google Scholar
  49. 49.
    Li, L.P., Ahsanizadeh, S.: Computational modelling of articular cartilage. In: Jin, Z. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, pp. 205–243. Woodhead Publications, Cambridge (2014)Google Scholar
  50. 50.
    Li, L.P., Korhonen, R.K., Iivarinen, J., Jurvelin, J.S., Herzog, W.: Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage. Med. Eng. Phys. 30, 182–189 (2008)CrossRefGoogle Scholar
  51. 51.
    Li, S., Patwardhan, A.G., Amirouche, F.M.L., Havey, R., Meade, K.P.: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. J. Biomech. 28, 779–790 (1995)CrossRefGoogle Scholar
  52. 52.
    Lu, X.L., Mow, V.C.: Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40, 193–199 (2008)CrossRefGoogle Scholar
  53. 53.
    Lu, X.L., Miller, C., Chen, F.H., Guo, X.E., Mow, V.C.: The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation. J. Biomech. 40, 2434–2441 (2006)Google Scholar
  54. 54.
    Mak, A.F.: The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108, 123–130 (1986)CrossRefGoogle Scholar
  55. 55.
    Markert, B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transport Porous Med. 70, 427–450 (2007)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Meng, X.N., LeRoux, M.A., Laursen, T.A., Setton, L.A.: A nonlinear finite element formulation for axisymmetric torsion of biphasic materials. Int. J. Solids Struct. 39, 879–895 (2002)zbMATHCrossRefGoogle Scholar
  57. 57.
    Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRefGoogle Scholar
  58. 58.
    Mow, V.C., Lai, W.M.: Recent developments in synovial joint biomechanics. SIAM Rev. 22, 275–317 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Mow, V.C., Holmes, M.H., Lai, W.M.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)CrossRefGoogle Scholar
  60. 60.
    Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980)CrossRefGoogle Scholar
  61. 61.
    Neubert, H.K.P.: A simple model representing internal damping in solid materials. Aeronaut. Quart. 14, 187–210 (1963)Google Scholar
  62. 62.
    Oomens, C.W.J., Van Campen, D.H., Grootenboer, H.J.: A mixture approach to the mechanics of skin. J. Biomech. 20, 877–885 (1987)CrossRefGoogle Scholar
  63. 63.
    Park, S., Krishnan, R., Nicoll, S.B., Ateshian, G.A.: Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36, 1785–1796 (2003)CrossRefGoogle Scholar
  64. 64.
    Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman and Hall/CRC Press, Boca Raton, London (2002)Google Scholar
  65. 65.
    Peña, E., Del Palomar, A.P., Calvo, B., Martínez, M.A., Doblaré, M.: Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch. Comput. Methods. Eng. 14, 47–91 (2007)Google Scholar
  66. 66.
    Raghunathan, S., Evans, D., Sparks, J.L.: Poroviscoelastic modeling of liver biomechanical response in unconfined compression. Ann. Biomed. Eng. 38, 1789–1800 (2010)CrossRefGoogle Scholar
  67. 67.
    Reynaud, B., Quinn, T.M.: Anisotropic hydraulic permeability in compressed articular cartilage. J. Biomech. 39, 131–137 (2006)CrossRefGoogle Scholar
  68. 68.
    Setton, L.A., Zhu, W., Mow, V.C.: The biphasic poroviscoelastic model for articular cartilage: theory and experiment. J. Biomech. 26, 581–592 (1993)CrossRefGoogle Scholar
  69. 69.
    Soltz, M.A., Ateshian, G.A.: Experimental verification and theoretical prediction of interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31, 927–934 (1998)CrossRefGoogle Scholar
  70. 70.
    Soltz, M.A., Ateshian, G.A.: Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28, 150–159 (2000)CrossRefGoogle Scholar
  71. 71.
    Spilker, R.L., Suh, J.K., Mow, V.C.: Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. J. Biomech. Eng. 112, 138–146 (1990)CrossRefGoogle Scholar
  72. 72.
    Suh, J.-K., Bai, S.: Finite element formulation of biphasic poroviscoelastic model for articular cartilage. J. Biomech. Eng. 120, 195–201 (1998)CrossRefGoogle Scholar
  73. 73.
    Suh, J.-K., Li, Z., Woo, S.L.-Y.: Dynamic behavior of a biphasic cartilage model under cyclic compressive loading. J. Biomech. 28, 357–364 (1995)CrossRefGoogle Scholar
  74. 74.
    Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1942)Google Scholar
  75. 75.
    Wang, C.C.-B., Hung, C.T., Mow, V.C.: An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34, 75–84 (2001)Google Scholar
  76. 76.
    Wilson, W., Van Donkelaar, C.C., Van Rietbergen, R., Huiskes, R.: The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med. Eng. Phys. 27, 810–826 (2005)CrossRefGoogle Scholar
  77. 77.
    Wu, J.Z., Dong, R.G., Schopper, A.W.: Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests. J. Biomech. 37, 147–155 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsAberystwyth UniversityAberystwythUK

Personalised recommendations