Advertisement

Unilateral Frictionless Contact of Thin Bonded Incompressible Elastic Layers

  • Ivan ArgatovEmail author
  • Gennady Mishuris
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 50)

Abstract

This chapter is devoted to solving contact problems for thin bonded incompressible transversely isotropic elastic layers in the thin-layer approximation, based on the leading-order asymptotic model developed in Chap.  2.

References

  1. 1.
    Alblas, J.B., Kuipers, M.: On the two dimensional problem of a cylindrical stamp pressed into a thin elastic layer. Acta Mech. 9, 292–311 (1970)zbMATHCrossRefGoogle Scholar
  2. 2.
    Aleksandrov, V.M.: Two problems with mixed boundary conditions for an elastic orthotropic strip. J. Appl. Math. Mech. 70, 128–138 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Argatov, I.I.: Approximate solution of an axisymmetric contact problem with allowance for tangential displacements on the contact surface. J. Appl. Mech. Tech. Phys. 45, 118–123 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Argatov, I.I.: Development of an asymptotic modeling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint. Multibody Syst. Dyn. 28, 3–20 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Argatov, I., Mishuris, G.: Frictionless elliptical contact of thin viscoelastic layers bonded to rigid substrates. Appl. Math. Model. 35, 3201–3212 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Argatov, I., Mishuris, G.: Elliptical contact of thin biphasic cartilage layers: Exact solution for monotonic loading. J. Biomech. 44, 759–761 (2011)CrossRefGoogle Scholar
  7. 7.
    Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)CrossRefGoogle Scholar
  8. 8.
    Barber, J.R.: Contact problems for the thin elastic layer. Int. J. Mech. Sci. 32, 129–132 (1990)zbMATHCrossRefGoogle Scholar
  9. 9.
    Borodich, F.M.: Similarity in the problem of contact between elastic bodies. J. Appl. Math. Mech. 47, 519–521 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)Google Scholar
  11. 11.
    Chadwick, R.S.: Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62, 1520–1530 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Erbaş, B., Yusufoğlu, E., Kaplunov, J.: A plane contact problem for an elastic orthotropic strip. J. Eng. Math. 70, 399–409 (2011)zbMATHCrossRefGoogle Scholar
  13. 13.
    Galanov, B.A.: Approximate solution to some problems of elastic contact of two bodies. Mech. Solids 16, 61–67 (1981)MathSciNetGoogle Scholar
  14. 14.
    Gefen, A.: The biomechanics of heel ulcers. J. Tissue Viabil. 19, 124–131 (2010)CrossRefGoogle Scholar
  15. 15.
    Georgiadis, L.M.: Tangential-displacement effects in the wedge indentation of an elastic half-space—an integral-equation approach. Comput. Mech. 21, 347–352 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hlaváček, M.: Elliptical contact on elastic incompressible coatings. Eng. Mech. 15, 249–261 (2008)Google Scholar
  17. 17.
    Jaffar, M.J.: Asymptotic behaviour of thin elastic layers bonded and unbonded to a rigid foundation. Int. J. Mech. Sci. 31, 229–235 (1989)CrossRefGoogle Scholar
  18. 18.
    Johnson, K.L.: Contact Mechanics. Cambridge Univ. Press, Cambridge, UK (1985)zbMATHCrossRefGoogle Scholar
  19. 19.
    Koroleva, A.A., Rogosin, S.V., Mishuris, G.S.: Analysis of the unilateral contact problem for biphasic cartilage layers with an elliptic contact zone and accounting for the tangential displacements. arXiv preprint arXiv:1503.06206 (2015)
  20. 20.
    Malits, P.: Plane contact problem for a thin incompressible strip. Q. J. Mech. Appl. Math. 65, 313–332 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Matthewson, M.J.: Axi-symmetric contact on thin compliant coatings. J. Mech. Phys. Solids 29, 89–113 (1981)zbMATHCrossRefGoogle Scholar
  22. 22.
    Portnoy, S., Vuillerme, N., Payan, Y., Gefen, A.: Clinically oriented real-time monitoring of the individual’s risk for deep tissue injury. Med. Biol. Eng. Comput. 49, 473–483 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsAberystwyth UniversityAberystwythUK

Personalised recommendations