Deformation of a Thin Bonded Transversely Isotropic Elastic Layer

  • Ivan ArgatovEmail author
  • Gennady Mishuris
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 50)


In this chapter we study frictionless contact problems for a thin transversely isotropic elastic layer bonded to a rigid substrate and indented by a smooth absolutely rigid punch under the assumption that the layer thickness is relatively small compared to the characteristic size of the contact area. We apply a perturbation technique to obtain asymptotic solutions of different degrees of accuracy and formulate simple mathematical models (called asymptotic models) to describe the deformational behavior of a bonded compressible elastic layer in the thin-layer approximation. In particular, the effects of unilateral contact interaction (with a priori unknown contact area) and the tangential displacements at the contact interface (taken into account in formulating the contact condition) are considered. It is shown that the case of an incompressible layer requires special consideration.


  1. 1.
    Aleksandrov, V.M.: On the approximate solution of a certain type of integral equation. J. Appl. Math. Mech. 26, 1410–1424 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexandrov, V.M., Pozharskii, D.A.: Three-Dimensional Contact Problems. Kluwer, Dordrecht (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Argatov, I.I.: Approximate solution of an axisymmetric contact problem with allowance for tangential displacements on the contact surface. J. Appl. Mech. Tech. Phys. 45, 118–123 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Argatov, I.I.: Pressure of a paraboloidal die on a thin elastic layer. Doklady Phys. 50, 524–528 (2005)CrossRefGoogle Scholar
  5. 5.
    Argatov, I.I.: Asymptotic Models of Elastic Contact [in Russian]. Nauka, St Petersburg (2005)Google Scholar
  6. 6.
    Argatov, I.I., Mishuris, G.S.: Axisymmetric contact problem for a biphasic cartilage layer with allowance for tangential displacements on the contact surface. Eur. J. Mech. A/Solids 29, 1051–1064 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Argatov, I., Mishuris, G.: Asymptotic Methods in Mechanics, [Electronic Edition]. Aberystwyth University, Ceredigion (2011)Google Scholar
  8. 8.
    Barber, J.R.: Contact problems for the thin elastic layer. Int. J. Mech. Sci. 32, 129–132 (1990)zbMATHCrossRefGoogle Scholar
  9. 9.
    Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, 309–323 (2001)CrossRefGoogle Scholar
  10. 10.
    Bigoni, D.: Nonlinear Solid Mechanics. Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)zbMATHCrossRefGoogle Scholar
  11. 11.
    Dutta, S.C., Roy, R.: A critical review on idealization and modeling for interaction among soil-foundation-structure system. Comput. Struct. 80, 1579–1594 (2002)CrossRefGoogle Scholar
  12. 12.
    Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique. Dunod, Paris (1972)zbMATHGoogle Scholar
  13. 13.
    Elliott, H.A.: Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math. Proc. Camb. Phil. Soc. 44, 522–533 (1948)CrossRefGoogle Scholar
  14. 14.
    Galanov, B.A.: Approximate solution to some problems of elastic contact of two bodies. Mech. Solids 16, 61–67 (1981)MathSciNetGoogle Scholar
  15. 15.
    Georgiadis, L.M.: Tangential-displacement effects in the wedge indentation of an elastic half-space—an integral-equation approach. Comput. Mech. 21, 347–352 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gol’denveizer, A.L.: Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity. J. Appl. Math. Mech. 26, 1000–1025 (1962)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jaffar, M.J.: Asymptotic behaviour of thin elastic layers bonded and unbonded to a rigid foundation. Int. J. Mech. Sci. 31, 229–235 (1989)CrossRefGoogle Scholar
  18. 18.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. Trans. ASME 31, 491–498 (1964)zbMATHCrossRefGoogle Scholar
  20. 20.
    Klarbring, A., Movchan, A.B.: Asymptotic modelling of adhesive joints. Mech. Mater. 28, 137–145 (1998)CrossRefGoogle Scholar
  21. 21.
    Kravchuk, A.S.: On the Hertz problem for linearly and nonlinearly elastic bodies of finite dimensions. J. Appl. Math. Mech. 41, 320–328 (1977)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lebon, F., Rizzoni, R.: Asymptotic analysis of a thin interface: the case involving similar rigidity. Int. J. Eng. Sci. 48, 473–486 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir publishing, Moscow (1981)zbMATHGoogle Scholar
  24. 24.
    Mishuris, G.: Mode III interface crack lying at thin nonhomogeneous anisotropic interface. Asymptotics near the crack tip. In: Movchan, A.B. (ed.) IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, pp. 251–260. Kluwer (2003)Google Scholar
  25. 25.
    Mishuris, G.: Imperfect transmission conditions for a thin weakly compressible interface. 2D problems. Arch. Mech. 56, 103–115 (2004)Google Scholar
  26. 26.
    Movchan, A.B., Movchan, N.V.: Mathematical Modeling of Solids with Nonregular Boundaries. CRC-Press, Boca Raton (1995)Google Scholar
  27. 27.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)Google Scholar
  28. 28.
    Ning, X., Lovell, M., Slaughter, W.S.: Asymptotic solutions for axisymmetric contact of a thin, transversely isotropic elastic layer. Wear 260, 693–698 (2006)CrossRefGoogle Scholar
  29. 29.
    Novozhilov, V.V.: Theory of Elasticity. Pergamon Press, New York (1961)zbMATHGoogle Scholar
  30. 30.
    Pasternak, P.L.: On a New Method of Analysis of an Elastic Foundation by Means of Two-Constants [in Russian]. Gosudarstvennoe Izdatelstvo Literatury po Stroitelstvu i Arkhitekture, Moscow (1954)Google Scholar
  31. 31.
    Popov, V.L., Heß, M.: Methode Der Dimensionsreduktion in Der Kontaktmechanik Und Reibung [in German]. Springer, Berlin (2013)CrossRefGoogle Scholar
  32. 32.
    Popov, V.L., Hess, M.: Method of dimensionality reduction in contact mechanics and friction: a users handbook. I. Axially-symmetric contacts. Facta Universitati. Ser. Mech. Eng. 12, 1–14 (2014)Google Scholar
  33. 33.
    Selvadurai, A.P.S.: Elastic Analysis of Soil-Foundation Interaction. Elsevier, Amsterdam (1979)Google Scholar
  34. 34.
    Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact: Variational Methods. Springer, Berlin (2004)CrossRefGoogle Scholar
  35. 35.
    Signorini, A.: Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. e Appl. 18, 95–139 (1959)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Ting, T.C.T.: Anisotropic Elasticity. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  37. 37.
    Vlasov, V.Z., Leontyev, N.N.: Beams, Plates and Shells on Elastic Foundation [in Russian]. Fizmatgiz, Moscow (1960). English translation, Israel Program for Scientific Translations, Jerusalem (1966)Google Scholar
  38. 38.
    Wang, Y.H., Tham, L.G., Cheung, Y.K.: Beams and plates on elastic foundations: a review. Prog. Struct. Eng. Mater. 7, 174–182 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsAberystwyth UniversityAberystwythUK

Personalised recommendations