The Impact of Sensitive Inputs on the Reliability of Nanoscale Circuits



As CMOS technology scales to nanometer dimensions, its performance and behavior become less predictable. Reliability studies for nanocircuits and systems become important when the circuit’s outputs are affected by its sensitive noisy inputs. In conventional circuits, the impact of the inputs on reliability can be observed by the deterministic input patterns. However, in nanoscale circuits, the inputs behave probabilistically. The Bayesian networks technique is used to compute the reliability of a circuit in conjunction with the Monte Carlo simulations approach which is applied to model the probabilistic inputs and ultimately to determine sensitive inputs and worst-case input combinations.


Input Sensitivity Nanoscale Circuits Input Combinations Deterministic Input Nanocircuits 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhang, K.: Challenges and opportunities in nano-scale VLSI design, International Symposium on VLSI Design, Automation and Test, 2005. (VLSI-TSA-DAT). IEEE VLSI-TSA 6(7), 27–29 (2005)Google Scholar
  2. 2.
    Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems: Design and Evaluation. AK Peters, Natick (1998)zbMATHGoogle Scholar
  3. 3.
    ITRS. International Technology Roadmap for Semiconductors (ITRS). Available via DIALOG. (2013)
  4. 4.
    Stanisavljevic, M.: Optimization of nanoelectronic systems reliability by reducing logic depth. In: Stanisavljevic, M., Schmid, A., Leblebici, Y. (eds.) Fourth International Conference on Nano-Nets, Nano-Net. Lucerne, Switzerland (2009)Google Scholar
  5. 5.
    Bhaduri, D.: Design and analysis of defect- and dault-tolerant nano-computing systems. Ph.D. dissertation, Virginia Polytechnic Institute and State University, etd-03182007-194734 (2007)Google Scholar
  6. 6.
    Khakifirooz, A., Antoniadis, D.A.: MOSFET Performance Scaling—Part II: Future Directions. IEEE Trans. Electron Dev. 55(6), 1401–1408 (2008)Google Scholar
  7. 7.
    Rusu, S.: Trends and scaling in VLSI technology scaling towards 100nm (Invited Paper). In: Rusu, S. (eds.) European Solid-State Circuits Conference (ESSCIRC) (2001)Google Scholar
  8. 8.
    Huang, C.: Robust Computing with Nanoscale Devices: Progresses and Challenges. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Stanisavljevic, M., Schmid, A., Leblebici, Y.: Reliability of Nanoscale Circuits and Systems: Methodologies and Circuit Architectures. Springer, New York (2010)Google Scholar
  10. 10.
    Ryhnen, T., Uusitalo, M.A., Ikkala, O., Krkkinen, A.: Nanotechnologies for Future Mobile Devices. Springer, Cambridge (2010)Google Scholar
  11. 11.
    Casati, G., Matrasulov, D.: Complex Phenomena in Nanoscale Systems. Springer, New York (2009)CrossRefGoogle Scholar
  12. 12.
    Wooley, J.C., Lin, H.: Catalyzing Inquiry at the Interface of Computing and Biology. National Academies Press, Washington (2005)Google Scholar
  13. 13.
    Tehranipoor, M.: Emerging Nanotechnologies: Test, Defect-Tolerance and Reliability, Frontiers in Electronic Testing, vol. 37. Springer, New York (2008)Google Scholar
  14. 14.
    Bahar, R.I., Mundy, J., Chan, J.: A probabilistic based design methodology for nanoscale computation. In: International Conference on Computer Aided Design (IC- CAD), pp. 480–486 (2003)Google Scholar
  15. 15.
    Anwer, J., Khalid, U., Singh, N., Hamid, N.H., Asirvadam, V.S.: A novel error-detection mechanism for digital circuits using Markov random field modelling. In: IEEE International Conference on Computational Intelligence and Communication Networks (CICN), pp. 883–886 (2012)Google Scholar
  16. 16.
    Nepal, K., Bahar, R.I., Mundy, J., Patterson, W.R., Zaslavsky, A.: MRF reinforcer: a probabilistic element for space redundancy in nanoscale circuits. IEEE Micro, IEEE Comput. Soc. Mag. 26(5), 19–27 (2006)CrossRefGoogle Scholar
  17. 17.
    Nepal, K.: Markov random field: in designing reliable nanoscale circuits using principles of Markov random fields. Ph.D. dissertation. Brown UniversityGoogle Scholar
  18. 18.
    Anwer, J., Khalid, U., Singh, N., Hamid, N.H., Asirvadam, V.S.: Highly noise-tolerant design of digital logic gates using Markov random field modelling. In: International Conference on Electronic Computer Technology (ICECT), pp. 24–28 (2010)Google Scholar
  19. 19.
    Anwer, J., Shaukat, S.F., Khalid, U., Hamid, N.H.: Reliable area index: a novel approach to measure reliability of Markov random field based circuits. In: International Conference on Intelligent and Advanced Systems (ICIAS), pp. 24–28 (2012)Google Scholar
  20. 20.
    Anwer, J., Fayyaz, A., Masud, M.M., Shaukat, S.F., Hamid, N.H.: Fault-tolerance and noise modelling in nanoscale circuit design. In: International Symposium on Signals Systems and Electronics (ISSSE), vol. 2, pp. 1–4 (2010)Google Scholar
  21. 21.
    Anwer, J., Khalid, U., Singh, N., Hamid, N.H., Asirvadam, V.S.: Joint and marginal probability analyses of Markov random field networks for digital logic circuits. In: International Conference on Intelligent and Advanced Systems (ICIAS), pp. 1–4 (2010)Google Scholar
  22. 22.
    Han, J., Taylor, E., Gao. J., Fortes, J.: Faults, error bounds and reliability of nanoelectronic circuits. In: Proceedings of 16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP), pp. 247–253 (2005)Google Scholar
  23. 23.
    Mohyuddin, N., Pakbaznia, E., Pedram, M.: Probabilistic error propagation in logic circuits using the boolean difference calculus. In: Proceedings of 26th International Conference on Computer Design (ICCD), pp. 7–13 (2008)Google Scholar
  24. 24.
    Krishnaswamy, S., Viamontes, G.F., Markov, I.L., Hayes, J.P.: Probabilistic transfer matrices in symbolic reliability analysis of logic circuits. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 13(1), 7–13 (2008)zbMATHGoogle Scholar
  25. 25.
    Rejimon, T., Lingasubramanian, K., Bhanja, S.: Probabilistic error modeling for nano-domain logic circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17(1), 5565 (2009)CrossRefGoogle Scholar
  26. 26.
    Han, J., Chen, H., Liang, J., Zhu, P., Yang, Z., Lombardi, F., Lombardi, F.: A stochastic computational approach for accurate and efficient reliability evaluation. IEEE Trans. Comput. 63(6), 1336–1350 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Singh, N.S.S., Hamid, N.H., Asirvadam, V.S., Khalid, U., Anwer, J.: Evaluation of circuit reliability based on distribution of different signal input patterns. In: IEEE 8th International Colloquium on Signal Processing and Its Applications (CSPA), pp. 5–9 (2012)Google Scholar
  28. 28.
    Singh, N.S.S., Hamid, N.H., Asirvadam, V.S., Khalid, U., Anwer, J.: Sensitivity analysis of probability transfer matrix (PTM) on same functionality circuit architectures. In: IEEE 8th International Colloquium on Signal Processing and Its Applications (CSPA), pp. 250–254 (2012)Google Scholar
  29. 29.
    Zhao, C., Bai, X., Dey, S.: Evaluating transient error effects in digital nanometer circuits. IEEE Trans. Reliab. 56(3), 381–391 (2007)CrossRefGoogle Scholar
  30. 30.
    Mavis, D.G., Eaton, P.H.: SEU and SET modeling and mitigation in deep submicron technologies. In: IEEE international Reliability Physics Symposium (IRPS), pp. 293–305, 15–19 (2007)Google Scholar
  31. 31.
    Veeravalli, V.S., Polzer, T., Steininger, A., Schmid, U.: Architecture and design analysis of a digital single-event transient/upset measurement chip. In: 15th Euromicro Conference on Digital System Design (DSD), pp. 8–17, 5–8 (2012)Google Scholar
  32. 32.
    Ferlet-Cavrois, V., Massengill, L.W., Gouker, P.: Single event transients in digital CMOS a review. IEEE Trans. Nucl. Sci. 60(3), 1767–1790 (2013)CrossRefGoogle Scholar
  33. 33.
    Sulieman, M., Beiu, V.: Design and analysis of SET circuits: using MATLAB modules and SIMON. In: 4th IEEE Conference on Nanotechnology, pp. 618–621, 16–19 (2004)Google Scholar
  34. 34.
    Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics, pp. 384. Cambridge University Press, Cambridge (2009)Google Scholar
  35. 35.
    Khalid, U., Anwer, J., Singh, N., Hamid, N.H., Asirvadam, V.S.: Reliability-evaluation of digital circuits using probabilistic computation schemes. In: National Postgraduate Conference (NPC), pp. 19–20 (2011)Google Scholar
  36. 36.
    Khalid, U., Anwer, J., Singh, N., Hamid, N.H., Asirvadam, V.S.: Computation and analysis of output error probability for C17 benchmark circuit using Bayesian networks error modeling. In: IEEE Student Conference on Research and Development (SCOReD), pp. 348–351 (2011)Google Scholar
  37. 37.
    Khalid, U.: Reliability-evaluation of nanoscale circuit design using Bayesian networks. Masters thesis, Universiti Teknologi Petronas. (2012)
  38. 38.
    BNT. Bayes Net Toolbox for Matlab (BNT). Available via DIALOG. (1997–2002). Accessed April 2014

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universiti Teknologi PetronasTeronohMalaysia
  2. 2.University of PaderbornPaderbornGermany

Personalised recommendations