Advertisement

Low-Power NoC Using Optimum Adaptation

Chapter

Abstract

Two power-reduction techniques are exploited to design a low leakage power NoC switch. First, the adaptive virtual channel (AVC) technique is presented as an efficient way to reduce the active area using a hierarchical multiplexing tree of VC groups. Second, power gating reduces the average leakage power consumption of the switch by controlling the supply power of the VC groups. The traffic-based virtual channel activation (TVA) algorithm is presented to determine traffic load status at the NoC switch ports. The TVA algorithm optimally utilizes virtual channels by deactivating idle VC groups to guarantee high leakage power saving without affecting the NoC throughput.

Keywords

SoC NoC AVC Power gating Leakage power reduction High throughput 

References

  1. 1.
    Rajsuman, R.: System-on-a-Chip Design and Test. Kluwer, Boston (2000)Google Scholar
  2. 2.
    Saleh, R., Wilton, S., Mirabbasi, S., Hu, A., Greenstreet, M., Lemieux, G., Pande, P., Grecu, C., Ivanov, A.: System-on-chip: reuse and integrate. Proc. IEEE 94(6), 1050–1069 (2006)CrossRefGoogle Scholar
  3. 3.
    Benini, L., Micheli, G.: Networks on chips: a new SoC paradigm. IEEE Comput. 35(1), 70–78 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bjerregaard, T., Mahadevan, S.: A survey of research and practices of network-on-chip. Proc. ACM Comput. Surv. 38(1), 1 (2006)CrossRefGoogle Scholar
  5. 5.
    Pande, P., Grecu, C., Ivanov, A., Saleh, R., De Micheli, G.: Design, synthesis and test of networks on chip. IEEE Des. Test Comput. 22(5), 404–413 (2005)CrossRefGoogle Scholar
  6. 6.
    Grecu, C.: Structured interconnect archiecture: a solution for the non-scalablility of bus-based SoCs. In: The Proceedings of the Great Lakes Symposium on VLSI, pp. 192–195, April 2004Google Scholar
  7. 7.
    Moraes, F., Calazans, N., Mello, A., Möller, L., Ost, L.: HERMES: an infrastructure for low area overhead packet-switching networks on chip. Integr. VLSI J 38(1), 69–93 (2004)CrossRefGoogle Scholar
  8. 8.
    Dally, W., Towles, B.: Route packets, not wires: on-chip interconnection networks: In: The IEEE Proceedings of the Design Automation Conference, pp. 684–689, June 2001Google Scholar
  9. 9.
    Ali, M., Welzl, M., Zwicknagl, M.: Networks on chips: scalable interconnects for future systems on chips. In: The Proceedings of the European Conference on Circuits and Systems for Communications, pp. 240–245, July 2008Google Scholar
  10. 10.
    Hemani, A., Jantsch, A., Kumar, S., Postula, A., Oberg, J., Millberg, M., Lindqvist, D.: Network on a chip: an architecture for billion transistor era. In: The Proceedings of IEEE NorChip Conference, pp. 166–173, November 2000Google Scholar
  11. 11.
    Huan, Y., DeHon, A/: FPGA optimized packet-switched NoC using split and merge primitives. In: The Proceedings of IEEE International Conference on Field-Programmable Technology, pp. 47–52, December 2012Google Scholar
  12. 12.
    Atienza, D., Angiolini, F., Murali, S., Pullini, A., Benini, L., Micheli, G.: Network-on-chip design and synthesis outlook. Integr. VLSI J 41(3), 340–359 (2008)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Jianyang, Z., Liu, S.: Research and analysis of routing algorithms for NoC. In: The Proceedings of Computer Research and Development, vol. 2, pp. 98–102, May 2011Google Scholar
  14. 14.
    Zhang, W., Hou, L., Wang, J., Geng, S., Wu, W.: Comparison research between XY and odd-even routing algorithm of a 2-dimension 3X3 mesh topology network-on-chip. In: The Proceedings of WRI Global Congress on Intelligent Systems, vol. 3, pp. 329–333 (2009)Google Scholar
  15. 15.
    Dally, W.: Virtual-channel flow control. IEEE Trans. Parallel Distrib. Syst. 3(2), 194–205 (1992)CrossRefGoogle Scholar
  16. 16.
    Pande, P., Grecu, C., Jones, M., Lvanov, A., Saleh, R.: Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Trans. Comput. 54(8), 1025–1040 (2005)CrossRefGoogle Scholar
  17. 17.
    Sharma, P., Bairathi, R.: Study and analysis of the behavior of a generic mesh architecture of NoC routers. In: The Proceeding of the International Multi-Conference of Engineers and Computer Scientists, vol. II, pp. 17–19, March 2010Google Scholar
  18. 18.
    Nadi, M., Ghadiry, M., Dermany, M.: The effect of number of virtual channel on NOC EDP. J. Appl. Math. Inf. 2010, 539–551 (2010)Google Scholar
  19. 19.
    Murali, S., Atienza, D., Meloni, P., Carta, S., Benini, L., Micheli, G., Raffo, L.: Synthesis of predictable networks-on-chip-based interconnect architectures for chip multiprocessors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(8), 869–880 (2007)CrossRefGoogle Scholar
  20. 20.
    Burd, T., Brodersen, R.: Energy Efficient Microprocessor Design, pp. 376. Kluwer Academic Publishers, Boston (2002)Google Scholar
  21. 21.
    Kam, T., Rawat, S., Kirkpatrick, D., Roy, R., Spirakis, G., Sherwani, N., Peterson, C.: EDA challenges facing future microprocessor design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(12), 1498–1506 (2000)CrossRefGoogle Scholar
  22. 22.
    Lee, K., Lee, S., Yoo, H.: Low-power network-on-chip for high performance SoC design. IEEE Trans. Very Large Scale Integr. Syst. (TVLSI) 14(2), 148–160 (2006)CrossRefGoogle Scholar
  23. 23.
    Milojevic, D., Montperrus, L., Verkest, D.: Power dissipation of the network-on-chip in a system-on-chip for MPEG-4 video encoding. In: IEEE Transactions on Solid-State Circuits, pp. 392–395, November 2007Google Scholar
  24. 24.
    Hu, Y., Zhu, Y., Chen, H., Graham, R., Cheng, C.: Communication latency aware low power NoC synthesis. In: The Proceedings of the IEEE/ACM Design Automation Conference, pp. 574–579 (2006)Google Scholar
  25. 25.
    Chouchene, W., Attia, B., Zitouni, A., Abid, N., Tourki, R.: A low power network interface for network on chip. In: The Proceeding of the International Multi-Conference on Systems, Signals and Devices, pp. 1–6, March 2011Google Scholar
  26. 26.
    Fang, Z., Hallnor, E., Li, B., Leddige, M., Dai, D.: Boomerang: reducing power consumption of response packets in NoCs with minimal performance impact. J. IEEE Comput. Archit. Lett. 9(2), 49–52 (2010)CrossRefGoogle Scholar
  27. 27.
    Ezz-Eldin, R., El-Moursy, M., Refaat, A.: Low power NoC switch using novel adaptive virtual channels. IJCSI Int. J. Comput. Sci. Issues 8(5), 303–308 (2011)zbMATHGoogle Scholar
  28. 28.
    Ezz-Eldin, R., El-Moursy, M., Refaat, A.: Novel adaptive virtual channels technique for NoC switch. In: The Proceedings of the IEEE International Design and Test Workshop, pp. 7–11, December 2011Google Scholar
  29. 29.
    Ezz-Eldin, R., El-Moursy, M., Refaat, A.: Low leakage power NoC switch using AVC. In: The Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2549–2552, May 2012Google Scholar
  30. 30.
    Wang, H., Peh, L., Malik, S.: A power for routers: modeling alpha 21364 and Infiniband routers. In: The Proceeding of the Symposium on High Performance Interconnects, pp. 21–27, August 2002Google Scholar
  31. 31.
    Wei, L., Roy, K., Vivek, D.: Low voltage low power CMOS design techniques for deep submicron ICs. In: The Proceedings of the International Conference on VLSI Design, pp. 24–29, January 2000Google Scholar
  32. 32.
    Rabaey, J., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits. Prentice Hall, Upper Saddle River (2003)Google Scholar
  33. 33.
    Bellaouar, A., Elmasry, M.: Low-power digital VLSI design. Kluwer Academic Publishers, Boston (1995)CrossRefGoogle Scholar
  34. 34.
    Benini, L.: Application specific NoC design. In: The Proceedings of the Design, Automation and Test in Europe, vol. 1, pp. 1–5 (2006)Google Scholar
  35. 35.
    Talwar, B., Amrutur, B.: Traffic engineered NoC for streaming applications. Microprocess. Microsyst. 37(3), 333–344 (2013)CrossRefGoogle Scholar
  36. 36.
    Muhammad, S.T., El-Moursy, M.A., El-Moursy, A.A., Refaat, A.M.: Traffic-based virtual channel activation for low-power NoC. In: The Proceedings of IEEE International Design and Test Workshop IDT, pp. 1–6, December 2013Google Scholar
  37. 37.
    Jain, L.: NIRGAM: a dynamic systemC simulator for NoC. http://nirgam.ecs.soton.ac.uk

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringBeni-suef UniversityBeni-suefEgypt
  2. 2.Mentor Graphics CorporationCairoEgypt
  3. 3.Department of Electrical EngineeringFayoum UniversityFayoumEgypt

Personalised recommendations