Advertisement

Digital IIR Filter Design with Fix-Point Representation Using Effective Evolutionary Local Search Enhanced Differential Evolution

Chapter
  • 610 Downloads

Abstract

Previously, the parameters of digital IIR filters were encoded with floating-point representations. It is known that a fixed-point representation can effectively save computational resources and is more convenient for direct realization on hardware. Inherently, compared with floating-point representation, fixed-point representation may make the search space miss much useful gradient information and, therefore, raises new challenges. In this chapter, the universality of DE-based MA is improved by implementing more efficient evolutionary algorithms (EAs) as the local search techniques. The performance of the newly designed algorithm is experimentally verified in both function optimization tasks and digital IIR filter design problems.

Keywords

Local Search Differential Evolution Global Search Memetic Algorithm Covariance Matrix Adaptation Evolution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1777–1784 (2005)Google Scholar
  2. 2.
    Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1769–1776 (2005)Google Scholar
  3. 3.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  4. 4.
    Caponio, A., Kononova, A.V., Neri, F.: Differential evolution with scale factor local search for large scale problems. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems. Studies in Evolutionary Learning and Optimization, vol. 2, pp. 297–323. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chen, C.T.: One-Dimensional Digital Signal Processing. Marcel Dekker, New York (1979)Google Scholar
  6. 6.
    Choo, H., Muhammad, K., Roy, K.: Complexity reduction of digital filters using shift inclusive differential coefficients. IEEE Trans. Signal Process. 52(6), 1760–1772 (2004)CrossRefGoogle Scholar
  7. 7.
    Dai, C.H., Chen, W.R., Zhu, Y.F.: Seeker optimization algorithm for digital IIR filter design. IEEE Trans. Ind. Electron 57(5), 1710–1718 (2010)CrossRefGoogle Scholar
  8. 8.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  9. 9.
    Debye, P.: Näherungsformeln für die Zylinderfunktionen für gro\(\beta \)e Werte des Arguments und unbeschränkt veränderliche Werte des Index. Mathematische Annalen 67(4), 535–558 (1909)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dong, W., Yao, X.: Covariance matrix repairing in Gaussian based EDAs. In: IEEE Congress on Evolutionary Computation (CEC07), pp. 415–422 (2007)Google Scholar
  11. 11.
    Dong, W., Yao, X.: Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms. Inf. Sci. 178(15), 3000–3023 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dong, W., Yao, X.: NichingEDA: utilizing the diversity inside a population of EDAs for continuous optimization. In: IEEE Congress on Evolutionary Computation, pp. 1260–1267 (2008)Google Scholar
  13. 13.
    Dong, W., Zhang, X., Jiang, Z., Sun, W., Xie, L., Hampapur, A.: Detect irregularly shaped spatio-temporal clusters for decision support. In: IEEE International Conference on Service Operations, Logistics, and Informatics, pp. 231–236 (2011)Google Scholar
  14. 14.
    Dong, W., Zhang, X., Li, L., Sun, C., Shi, L., Sun, W.: Detecting irregularly shaped significant spatial and spatio-temporal clusters. SIAM Data Mining, pp. 732–743 (2012)Google Scholar
  15. 15.
    Dong, W., Li, L., Zhou, C., Wang, Y., Li, M., Tian, C., Sun, W.: Discovery of generalized spatial association rules. In: IEEE International Conference on Service Operations, Logistics, and Informatics, pp. 60–65 (2012)Google Scholar
  16. 16.
    Dong, W., Fan, W., Shi, L., Zhou, C., Yan, X.: A general framework to encode heterogeneous information sources for contextual pattern mining. In: ACM International Conference on Information and Knowledge Management, pp. 65–74 (2012)Google Scholar
  17. 17.
    Dong, W., Chen, T., Tino, P., Yao, X.: Scaling up estimation of distribution algorithms for continuous optimization. IEEE Trans. Evol. Comput. 17(6), 797–822 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Elloumi, S., Fortemps, P.: A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 205, 31–41 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Etter, D.M., Hicks, M.J., Cho, K.H.: Recursive adaptive filter design using an adaptive genetic algorithm. In: Proceedings of IEEE International Conference on ASSP, pp. 635–638 (1982)Google Scholar
  20. 20.
    Florios, K., Mavrotas, G., Diakoulaki, D.: Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms. Eur. J. Oper. Res. 203, 14–21 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Garcia-Najera, A., Bullinaria, J.A.: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 38(1), 287–300 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hanne, T.: A multiobjective evolutionary algorithm for approximating the efficient set. Eur. J. Oper. Res. 176, 1723–1734 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hanne, T., Nickel, S.: A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects. Eur. J. Oper. Res. 167, 663–678 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Harris, S.P., Ifeachor, E.C.: Automatic design of frequency sampling filters by hybrid genetic algorithm techniques. IEEE Trans. Signal Process. 46(12), 3304–3314 (1998)CrossRefzbMATHGoogle Scholar
  25. 25.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)CrossRefGoogle Scholar
  26. 26.
    Hasan, S., Sarker, R., Essam, D., Cornforth, D.: Memetic algorithms for solving job-shop scheduling problems. Memet. Comput. 1(1), 69–83 (2009)CrossRefGoogle Scholar
  27. 27.
    Haseyama, M., Matsuura, D.: A filter coefficient quantization method with genetic algorithm, including simulated annealing. IEEE Signal Process. Lett. 13(4), 189–192 (2006)CrossRefGoogle Scholar
  28. 28.
    Hestenes, R.M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl Bur. Stand. 49(6), 409–436 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Houck, C.: Joines, J., Kay, M.: Utilizing Lamarckian evolution and the Baldwin effect in hybrid genetic algorithms. NCSU-IE Technical Report 96-01, Meta-Heuristic Research and Applications Group, Department of Industrial Engineering, North Carolina State University (1996)Google Scholar
  30. 30.
    Kalinli, A., Karaboga, N.: Artificial immune algorithm for IIR filter design. J. Eng. Appl. Artif. Intell. 18(5), 919–929 (2005)CrossRefGoogle Scholar
  31. 31.
    Kalinli, A., Karaboga, N.: A new method for adaptive IIR filter design based on Tabu search algorithm. Int. J. Electron. Commun. 59(2), 111–117 (2005)CrossRefGoogle Scholar
  32. 32.
    Karaboga, N., Kalinli, A., Karaboga, D.: Designing IIR filters using ant colony optimisation algorithm. J. Eng. Appl. Artif. Intell. 17(3), 301–309 (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1671–1676 (2002)Google Scholar
  34. 34.
    Kim, Y.K., Park, K., Ko, J.: A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling. Comput. Oper. Res. 30(8), 1151–1171 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)CrossRefGoogle Scholar
  36. 36.
    Krusienski, D.J., Jenkins, W.K.: Design and performance of adaptive systems based on structured stochastic optimization. IEEE Circuits Syst. Mag. 5(1), 8–20 (2005)CrossRefGoogle Scholar
  37. 37.
    Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 522–528 (2005)Google Scholar
  38. 38.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRefGoogle Scholar
  39. 39.
    Liao, T.W.: Two hybrid differential evolution algorithms for engineering design optimization. Appl. Soft Comput. 10(4), 1188–1199 (2010)CrossRefGoogle Scholar
  40. 40.
    Lozano, M., García-Martínez, C.: Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report. Comput. Oper. Res. 37(3), 481–497 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lu, Y.L., Zhou, J.Z., Qin, H., Li, Y.H., Zhang, Y.C.: An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects. Expert Syst. Appl. 37(7), 4842–4849 (2010)CrossRefGoogle Scholar
  42. 42.
    Lu, Y.L., Zhou, J.Z., Qin, H., Li, Y.H., Zhang, Y.C.: An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem. Energy Convers. Manag. 51(7), 1481–1490 (2010)CrossRefGoogle Scholar
  43. 43.
    Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)CrossRefGoogle Scholar
  44. 44.
    Molina, D., Herrera, F., Lozano, M.: Adaptive local search parameters for real-coded memetic algorithms. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 888–895 (2005)Google Scholar
  45. 45.
    Moscato, P. : Genetic algorithms and martial arts: towards memetic algorithms. Publication Report 790, Caltech Concurrent Computation Program (1989)Google Scholar
  46. 46.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a review and experimental analysis. Artif. Intell. Rev. 33(1), 61–106 (2010)CrossRefGoogle Scholar
  47. 47.
    Neumann, F.: Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Comput. Oper. Res. 35(9), 2750–2759 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Nguyen, Q.H., Ong, Y.S., Lim, M.H.: A probabilistic memetic framework. IEEE Trans. Evol. Comput. 13(3), 604–623 (2009)CrossRefGoogle Scholar
  49. 49.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  50. 50.
    Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12(1), 107–125 (2008)CrossRefGoogle Scholar
  51. 51.
    Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithms. IEEE Trans. Evol. Comput. 8(2), 99–110 (2004)CrossRefGoogle Scholar
  52. 52.
    Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. Part B 36(1), 141–152 (2006)CrossRefGoogle Scholar
  53. 53.
    Ong, Y.S., Lim, M.H., Chen, X.S.: Research frontier: memetic computation—past, present & future. IEEE Comput. Intell. Mag. 5(2), 24–36 (2010)CrossRefGoogle Scholar
  54. 54.
    Pan, S.T.: A canonic-signed-digit coded genetic algorithm for designing finite impulse response digital filter. Digit. Signal Process. 20(314–327), 2010 (2010)Google Scholar
  55. 55.
    Pena, J.M., Robles, V., Larranaga, P., Herves, V., Rosales, F., Perez, M.S.: GA-EDA: hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. Proc. Lect. Notes Comput. Sci. 3029, 361–371 (2004)CrossRefGoogle Scholar
  56. 56.
    Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm optimization. In: Proceedings of Swarm Intelligence Symposium, p. 174 (2003)Google Scholar
  57. 57.
    Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(4), 303–307 (1964)CrossRefGoogle Scholar
  58. 58.
    Prodhon, C.: A hybrid evolutionary algorithm for the periodic location-routing problem. Eur. J. Oper. Res. 210, 204–212 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1785–1791 (2005)Google Scholar
  60. 60.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefzbMATHGoogle Scholar
  61. 61.
    Rökkönen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with differential evolution. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 506–513 (2005)Google Scholar
  62. 62.
    dos Santos Coelho, L., Cocco Mariani, V.: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans. Power Syst. 21(2), 989–996 (2006)CrossRefGoogle Scholar
  63. 63.
    Shah, R., Reed, P.: Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems. Eur. J. Oper. Res. 211, 466–479 (2011)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Shynk, J.J.: Adaptive IIR filtering. IEEE ASSP Mag. 6(2), 4–21 (1989)CrossRefGoogle Scholar
  65. 65.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic strategy for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Sun, J., Zhang, Q.F., Tsang, E.: DE/EDA: a new evolutionary algorithm for global optimization. Inf. Sci. 169, 249–262 (2005)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Tan, K.C., Chew, Y.H., Lee, L.H.: A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems. Eur. J. Oper. Res. 172, 855–885 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Tang, K.S., Man, K.F., Kwong, S., Liu, Z.F.: Design and optimization of IIR filter structure using hierarchical genetic algorithms. IEEE Trans. Ind. Electron 45(3), 481–487 (1998)CrossRefGoogle Scholar
  69. 69.
    Tarczynski, A., Cain, G.D., Hermanowicz, E., Rojewski, M.: A WISE method for designing IIR filters. IEEE Trans. Signal Process. 49(7), 1421–1432 (2001)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Tsai, J.T., Chou, J.H., Liu, T.K.: Optimal design of digital IIR filters by using hybrid Taguchi genetic algorithm. IEEE Trans. Ind. Electron 53(3), 867–879 (2006)CrossRefGoogle Scholar
  71. 71.
    Vanuytsel, G., Boets, P., Van Biesen, L., Temmerman, S.: Efficient hybrid optimization of fixed-point cascaded IIR filter coefficients. In: Proceedings of IEEE Instrumentation and Measurement, pp. 793–797 (2002)Google Scholar
  72. 72.
    Vicini, A., Quagliarella, D.: Airfoil and wing design using hybrid optimization strategies. Am. Inst. Aeronaut. Astronaut. J. 37(5), 634–641 (1999)CrossRefGoogle Scholar
  73. 73.
    Vrugt, J.A., Robinson, B.A., Hyman, J.M.: Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans. Evol. Comput. 13(2), 243–259 (2009)CrossRefGoogle Scholar
  74. 74.
    Wang, R., Dong, W., Wang, Y., Tang, K., Yao, X.: Pipe failure prediction: a data mining method. In: IEEE International Conference on Data Engineering, pp. 1208–1218 (2013)Google Scholar
  75. 75.
    Wang, Y., Li, B.: A restart univariate estimation of distribution algorithm: sampling under mixed Gaussian and Levy probability distribution. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2008), pp. 3218–3925 (2008)Google Scholar
  76. 76.
    Wang, Y., Li, B.: A self-adaptive mixed distribution based uni-variate estimation of distribution algorithm for large scale global optimization. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimization. Studies in Computational Intelligence, pp. 171–198. Springer, New York (2009)CrossRefGoogle Scholar
  77. 77.
    Wang, Y., Li, B., Weise, T.: Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems. Inf. Sci. 180(12), 2405–2420 (2011)CrossRefGoogle Scholar
  78. 78.
    Wang, Y., Li, B.: Two-stage based ensemble optimization for large-scale global optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–8 (2011)Google Scholar
  79. 79.
    Wang, Y., Li, B., Chen, Y.B.: Digital IIR filter design using multi-objective optimization evolutionary algorithm. Apply Soft Comput. 11(2), 1851–1857 (2011)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Wang, Y., Li, B., Weise, T., Wang, J.Y., Yuan, B., Tian, Q.J.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)CrossRefzbMATHGoogle Scholar
  81. 81.
    Wang, Y., Li, B., Zhang, K.B.: Estimation of distribution and differential evolution cooperation for real-world numerical optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2011), pp. 1315–1321 (2011)Google Scholar
  82. 82.
    Wang, Y., Li, B., Weise, T.: Two-Stage ensemble memetic algorithm: function optimization and digital IIR filter design. Inf. Sci. 220(20), 408–424 (2013)CrossRefGoogle Scholar
  83. 83.
    Wang, Y., Huang, J., Dong, W., Yan, J., Tian, C., Li, M., Mo, W.: Two-stage based ensemble optimization framework for large-scale global optimization. Eur. J. Oper. Res. 228(2), 308–320 (2013)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  85. 85.
    Yan, J., Li, Y., Zheng, E., Liu, Y.: An accelerated human motion tracking system based on voxel reconstruction under complex environments. In: Asian Conference on Computer Vision (ACCV), pp. 313–324 (2009)Google Scholar
  86. 86.
    Yan, J., Zhu, M., Liu, H., Liu, Y.: Visual saliency detection via sparsity pursuit. IEEE Signal Process. Lett. 17(8), 739–742 (2010)CrossRefGoogle Scholar
  87. 87.
    Yan, J., Shen, S., Li, Y., Liu, Y.: An optimization based framework for human pose estimation. IEEE Signal Process. Lett. 17(8), 766–769 (2010)CrossRefGoogle Scholar
  88. 88.
    Yan, J., Zhu, M., Liu, H., Liu, Y.: Visual saliency detection via rank-sparsity decomposition. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 1089–1092 (2010)Google Scholar
  89. 89.
    Yan, J., Song, J., Wang, L., Liu, Y.: Model-based 3D human motion tracking and voxel reconstruction from sparse views. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3265–3268 (2010)Google Scholar
  90. 90.
    Yan, J., Tong, M.: Weighted sparse coding residual minimization for visual tracking. In: 2011 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2011)Google Scholar
  91. 91.
    Yan, J., Tian, C., Huang, J., Albertao, F.: Incremental dictionary learning for fault detection with applications to oil pipeline leakage detection. Electron. Lett., IET 47(21), 1198–1199 (2011)CrossRefGoogle Scholar
  92. 92.
    Yan, J., Wang, Y., Zhou, K., Huang, J., Tian, C., Zha, H.: Towards effective prioritizing water pipe replacement and rehabilitation. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2931–2937. AAAI Press (2013)Google Scholar
  93. 93.
    Yao, X., Liu, Y.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)CrossRefGoogle Scholar
  94. 94.
    Yu, Y., Yu, X.J.: Cooperative coevolutionary genetic algorithm for digital IIR filter design. IEEE Trans. Ind. Electron 54(3), 1811–1819 (2007)CrossRefGoogle Scholar
  95. 95.
    Zhang, C., Ruan, X., Zhao, Y.M., Yang, M.H.: Contour detection via random forest. Proc. Int. Conf. Pattern Recogn. 2012, 2772–2775 (2012)Google Scholar
  96. 96.
    Zhang, C., Li, X., Ruan, X., Zhao, Y.M., Yang, M.H.: Discriminative generative contour detection. In: Proceedings of the British Machine Vision Conference 2013, pp. 74.1–74.11 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Alibaba GroupHangzhouChina
  2. 2.IBM Research-ChinaBeijingChina

Personalised recommendations