Skip to main content

Sizing Digital Circuits Using Convex Optimization Techniques

  • 650 Accesses

Abstract

This chapter collects recent advances in using convex optimization techniques to perform sizing of digital circuits. Convex optimization techniques provide an undeniably attractive promise: The attained solution is the best available. In order to use convex optimization techniques, the target optimization problem must be modeled using convex functions. The gate sizing problem has been modeled in different ways to enable the use of convex optimization techniques, such as linear programming and geometric programming. Statistical and robust sizing methods are included to reflect the importance of optimization techniques that are aware of variations. Applications of multi-objective optimization techniques that aid designers in evaluating the trade-offs are described.

Keywords

  • Convex Optimization
  • Stochastic Programming
  • Robust Optimization
  • Digital Circuit
  • Geometric Programming

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20071-2_1
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-20071-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7

References

  1. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Berkelaar, M., Jess, J.: Gate sizing in MOS digital circuits with linear programming. In: Proceedings of the Conference on European Design Automation, EURO-DAC ’90, pp. 217–221 (1990)

    Google Scholar 

  3. Bertsekas, D.: Nonlinear Programming, edn. Athena Scientific (1999)

    Google Scholar 

  4. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  7. Chinnery, D., Keutzer, K.: Linear programming for sizing, vth and vdd assignment. In: Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005. ISLPED ’05. pp. 149–154 (2005). doi:10.1109/LPE.2005.195505

  8. Dyer, M., Stougie, L.: Computational complexity of stochastic programming problems. Math. Program. 106(3), 423–432 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Elmore, W.: The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19(1), 55–63 (1948)

    CrossRef  Google Scholar 

  10. Farshidi, A., Rakai, L., Behjat, L., Westwick, D.: Optimal gate sizing using a self-tuning multi-objective framework. Integr. VLSI J. 47(3), 347–355 (2014). (Special issue: VLSI for the new era)

    Google Scholar 

  11. Fishburn, J., Dunlop, A.: TILOS: A posynomial programming approach to transistor sizing. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 326–328 (1985)

    Google Scholar 

  12. Jeong, K., Kahng, A., Yao, H., Rakai, D.: Revisiting the linear programming framework for leakage power vs. performance optimization. In: Quality of Electronic Design, 2009. ISQED 2009. Quality Electronic Design, pp. 127–134 (2009)

    Google Scholar 

  13. Joshi, S., Boyd, S.: An efficient method for large-scale gate sizing. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(9), 2760–2773 (2008)

    MathSciNet  CrossRef  Google Scholar 

  14. Kasamsetty, K., Ketkar, M., Sapatnekar., S.: A new class of convex functions for delay modeling and its application to the transistor sizing problem [CMOS gates]. IEEE Trans. CAD 19(7), 779–788 (2006)

    Google Scholar 

  15. Kashfi, F., Hatami, S., Pedram, M.: Multi-objective optimization techniques for VLSI circuits. In: Proceedings of ISQED, pp. 156–163 (2011)

    Google Scholar 

  16. Kim, I., de Weck, O.: Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct. Multidiscip. Optim. 29(2), 149–158 (2005)

    CrossRef  Google Scholar 

  17. Luenberger, D.: Theory of Linear and Integer Programming. Springer, Berlin (2003)

    Google Scholar 

  18. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Nguyen, D., Davare, A., Orshansky, M., Chinnery, D., Thompson, B., Keutzer, K.: Minimization of dynamic and static power through joint assignment of threshold voltages and sizing optimization [logic ic design]. In: Low Power Electronics and Design, 2003. ISLPED ’03. Proceedings of the 2003 International Symposium on, pp. 158–163 (2003)

    Google Scholar 

  20. Orshansky, M., Nassif, S., Boning, D.: Design for Manufacturability and Statistical Design. A Constructive Approach. Springer, Berlin (2007)

    Google Scholar 

  21. Rakai, L., Farshidi, A., Westwick, D., Behjat, L.: Variation-aware geometric programming models for the clock network buffer sizing problem. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 33(4), 532–545 (2014)

    CrossRef  Google Scholar 

  22. Sapatnekar, S., Rao, V., Vaidya, P., Kang, S.: An exact solution to the transistor sizing problem for cmos circuits using convex optimization. IEEE Trans. CAD 12, 1621–1634 (1993)

    CrossRef  Google Scholar 

  23. Singh, J., Luo, Z., Sapatnekar, S.: A geometric programming-based worst case gate sizing method incorporating spatial correlation. IEEE Trans. Comput.-Aided Design 27(2), 295–308 (2008)

    CrossRef  Google Scholar 

  24. Singh, J., Nookala, V., Luo, Z., Sapatnekar, S.: Robust gate sizing by geometric programming. In: Proceedings of DAC, pp. 315–320 (2005)

    Google Scholar 

  25. Srivastava, A., Sylvester, D., Blaauw, D.: Statistical Analysis and Optimization for VLSI: Timing and Power. Springer, Berlin (2005)

    Google Scholar 

  26. Wu, T.H., Davoodi, A., Linderoth, J.: GRIP: Global routing via integer programming. IEEE Trans. CAD 30(1), 72–84 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Logan Rakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rakai, L., Farshidi, A. (2015). Sizing Digital Circuits Using Convex Optimization Techniques. In: Fakhfakh, M., Tlelo-Cuautle, E., Siarry, P. (eds) Computational Intelligence in Digital and Network Designs and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20071-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20071-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20070-5

  • Online ISBN: 978-3-319-20071-2

  • eBook Packages: Computer ScienceComputer Science (R0)