Pin-Count and Wire Length Optimization for Electrowetting-on-Dielectric Chips: A Metaheuristics-Based Routing Algorithm



Electrowetting-on-dielectric chips are gaining momentum as efficient alternatives to conventional biochemical laboratories due to their flexibility and low power consumption. In this chapter, we present a novel two-stage metaheuristic algorithm to optimize electrode interconnect routing for pin-constrained chips. The first stage models channel routing as a traveling salesman problem and solves it using the ant colony optimization algorithm. The second stage provides detailed wire routes over a grid model. The algorithm is benchmarked over a set of real-life chip specifications. On average, comparing our results to previous work, we obtain reductions of approximately 39 % and 35 % on pin-count and total wire length, respectively.


Travel Salesman Problem Wire Length Channel Path Compatibility Graph Total Wire Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (eds.): Handbook of Algorithms for Physical Design Automation. CRC Press, Boca Raton (2008)Google Scholar
  2. 2.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). doi: 10.1145/362342.362367 CrossRefGoogle Scholar
  3. 3.
    Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H., Burke, D.T.: An integrated nanoliter DNA analysis device. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 282(5388), 484–487 (1998). doi: 10.1126/science.282.5388.484 Google Scholar
  4. 4.
    Business Communications Company Inc: Global Biochip Markets: Microarrays and Lab-on-a-Chip, chap. Biotechnology. BCC (2013). Accessed 19 June 2015
  5. 5.
    Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques. Theor. Comput. Sci. 407(1–3), 564–568 (2008). doi: 10.1016/j.tcs.2008.05.010 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chakrabarty, K.: Design automation and test solutions for digital microfluidic biochips. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(1), 4–17 (2010). doi: 10.1109/TCSI.2009.2038976 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cho, M., Pan, D.Z.: A high-performance droplet router for digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(10), 1714–1724 (2008). doi: 10.1109/TCAD.2008.2003282 CrossRefGoogle Scholar
  8. 8.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 26(1), 29–41 (1996). doi: 10.1109/3477.484436 CrossRefGoogle Scholar
  9. 9.
    Fair, R., Khlystov, A., Tailor, T., Ivanov, V., Evans, R., Griffin, P., Srinivasan, V., Pamula, V., Pollack, M., Zhou, J.: Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007). doi: 10.1109/MDT.2007.8 CrossRefGoogle Scholar
  10. 10.
    Fischetti, M., Gonzàlez, J.J.S., Toth, P.: The symmetric generalized traveling salesman polytope. Networks 26(2), 113–123 (1995). doi: 10.1002/net.3230260206 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gong, J., Kim, C.J.: Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. J. Microelectromech. Syst. 17(2), 257–264 (2008). doi: 10.1109/JMEMS.2007.912698 CrossRefGoogle Scholar
  12. 12.
    Ho, T.Y., Zeng, J., Chakrabarty, K.: Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’10), pp. 578–585 (2010)Google Scholar
  13. 13.
    Huang, T.W., Lin, Y.Y., Chang, J.W., Ho, T.Y.: Chip-level design and optimization for digital microfluidic biochips. In: 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS’11), pp. 1–4 (2011). doi: 10.1109/MWSCAS.2011.6026535
  14. 14.
    Huang, T.W., Yeh, S.Y., Ho, T.Y.: A network-flow based pin-count aware routing algorithm for broadcast-addressing EWOD chips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(12), 1786–1799 (2012). doi: 10.1109/TCAD.2011.2163158 CrossRefGoogle Scholar
  15. 15.
    International Roadmap Committee: International Technology Roadmap for Semiconductors, chap. Design. ITRS (2009). Accessed 19 June 2015
  16. 16.
    Luo, Y., Chakrabarty, K., Ho, T.Y.: Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013). doi: 10.1109/TCAD.2012.2211104 CrossRefGoogle Scholar
  17. 17.
    Pollack, M.G., Shenderov, A.D., Fair, R.B.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002). doi: 10.1039/B110474H CrossRefGoogle Scholar
  18. 18.
    Song, J., Evans, R., Lin, Y.Y., Hsu, B.N., Fair, R.: A scaling model for electrowetting-on-dielectric microfluidic actuators. Microfluid. Nanofluidics 7, 75–89 (2009). doi: 10.1007/s10404-008-0360-y CrossRefGoogle Scholar
  19. 19.
    Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004). doi: 10.1039/B403341H CrossRefGoogle Scholar
  20. 20.
    Su, F., Hwang, W., Chakrabarty, K.: Droplet routing in the synthesis of digital microfluidic biochips. In: Design, Automation and Test in Europe (DATE’06), pp. 1–6 (2006). doi: 10.1109/DATE.2006.244177
  21. 21.
    Xu, T., Chakrabarty, K.: Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: 45th ACM/IEEE Design Automation Conference (DAC’08), pp. 173–178 (2008). doi: 10.1109/TCAD.2011.2116250
  22. 22.
    Yeh, S.H., Chang, J.W., Huang, T.W., Ho, T.Y.: Voltage-aware chip-level design for reliability-driven pin-constrained EWOD chips. In: International Conference on Computer-Aided Design (ICCAD’12), pp. 353–360 (2012). doi: 10.1145/2429384.2429461
  23. 23.
    Yen, J.Y.: Finding the k shortest loopless paths in a network. J. Manag. Sci. 17(11), 712–716 (1971)CrossRefGoogle Scholar
  24. 24.
    Yuh, P.H., Yang, C.L., Chang, Y.W.: Bioroute: a network-flow based routing algorithm for digital microfluidic biochips. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (ICCAD’07), pp. 752–757 (2007). doi: 10.1109/TCAD.2008.2006140

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer and Systems EngineeringAin Shams UniversityCairoEgypt

Personalised recommendations