Skip to main content

Cellular and Molecular Biology of Esophageal Cancer

  • Chapter
Esophageal Cancer

Abstract

Esophageal cancers comprise cancers of different histological types with diverse cellular and molecular bases. The major histological types of esophageal cancers are squamous cell carcinoma and adenocarcinoma. It is important to note that there are histological variants of squamous cell carcinoma and adenocarcinoma such as basaloid squamous cell carcinoma, spindle cell carcinoma, mucoepidermoid carcinoma, and adenosquamous carcinoma. In addition, neuroendocrine neoplasms such as small cell carcinoma of the esophagus account for approximately 1 % of primary esophageal carcinoma. All these carcinomas have distinct clinicopathological features. Limited studies have revealed that the cellular and molecular biology of these uncommon types of esophageal carcinomas are different from those of esophageal squamous cell carcinoma or adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lam KY, Ma L. Pathology of esophageal cancers: local experience and current insights. Chin Med J. 1997;110:459–64.

    CAS  PubMed  Google Scholar 

  2. Lam AKY. Critical review: molecular biology of esophageal squamous cell carcinoma. Crit Rev Oncol Hematol. 2000;33:71–90.

    Article  CAS  PubMed  Google Scholar 

  3. Lam KY, Law S, Tung PH, Wong J. Esophageal basaloid squamous cell carcinoma: an unique clinicopathological entity with telomerase activity as a prognostic indicator. J Pathol. 2001;195:435–42.

    Article  CAS  PubMed  Google Scholar 

  4. Lam KY, Law SYK, Loke SL, Fok M, Ma LT. Double sarcomatoid carcinomas of the esophagus. Path Res Pract. 1996;192:604–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lam KY, Dickens P, Loke SL, Fok M, Ma L, Wong J. Squamous cell carcinoma of the esophagus with mucin-secreting component (mucoepidermoid carcinoma and adenosquamous cell carcinoma): a clinicopathologic study and a review of literature. Eur J Surg Oncol. 1994;20:25–31.

    CAS  PubMed  Google Scholar 

  6. Law SYK, Fok M, Lam KY, Loke SL, Ma LT, Wong J. Small cell carcinoma of the esophagus. Cancer. 1994;73:2894–9.

    Article  CAS  PubMed  Google Scholar 

  7. Chow V, Law S, Lam KY, Luk JM, Wong J. Telomerase activity in small cell esophageal carcinoma. Dis Esophagus. 2001;14:139–42.

    Article  CAS  PubMed  Google Scholar 

  8. Lam KY, Law S, Tung PH, Wong J. Esophageal small cell carcinoma: clinicopathologic parameters, p53 overexpression, proliferative marker, and their impact on pathogenesis. Arch Pathol Lab Med. 2000;124:228–33.

    CAS  PubMed  Google Scholar 

  9. Garbuglia AR. Human papillomavirus in head and neck cancer. Cancers (Basel). 2014;6:1705–26.

    Article  CAS  Google Scholar 

  10. Salazar CR, Anayannis N, Smith RV, Wang Y, Haigentz Jr M, Garg M, Schiff BA, Kawachi N, Elman J, Belbin TJ, Prystowsky MB, Burk RD, Schlecht NF. Combined p16 and human papillomavirus testing predicts head and neck cancer survival. Int J Cancer. 2014;135:2404–12.

    Article  CAS  PubMed  Google Scholar 

  11. Westra WH. Detection of human papillomavirus (HPV) in clinical samples: evolving methods and strategies for the accurate determination of HPV status of head and neck carcinomas. Oral Oncol. 2014;50:771–9.

    Article  PubMed Central  PubMed  Google Scholar 

  12. He D, Zhang DK, Lam KY, Ma L, Ngan HYS, Liu SS, Tsao SW. Prevalence of HPV infection in esophageal squamous cell carcinoma in Chinese patients and its relationship to the p53 gene mutation. Int J Cancer. 1997;72:959–64.

    Article  CAS  PubMed  Google Scholar 

  13. Lam KY, He D, Ma L, Zhang D, Ngan HYS, Wan TSK, Tsao SW. Presence of human papillomavirus in esophageal squamous cell carcinomas of Hong Kong Chinese and its relationship with p53 gene mutation. Hum Pathol. 1997;28:657–63.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Gao C, Yang Y, Zhou F, Li M, Jin Q, Gao L. Systematic review with meta-analysis: the association between human papillomavirus infection and oesophageal cancer. Aliment Pharmacol Ther. 2014;39:270–81.

    Article  CAS  PubMed  Google Scholar 

  15. Löfdahl HE, Du J, Näsman A, Andersson E, Rubio CA, Lu Y, Ramqvist T, Dalianis T, Lagergren J, Dahlstrand H. Prevalence of human papillomavirus (HPV) in oesophageal squamous cell carcinoma in relation to anatomical site of the tumour. PLoS One. 2012;7, e46538.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Vaiphei K, Kochhar R, Bhardawaj S, Dutta U, Singh K. High prevalence of human papillomavirus in esophageal squamous cell carcinoma: a study in paired samples. Dis Esophagus. 2013;26:282–7.

    Article  CAS  PubMed  Google Scholar 

  17. Al-Haddad S, El-Zimaity H, Hafezi-Bakhtiari S, Rajendra S, Streutker CJ, Vajpeyi R, Wang B. Infection and esophageal cancer. Ann N Y Acad Sci. 2014;1325:187–96.

    Article  PubMed  Google Scholar 

  18. Lam KY, Srivastava G, Leung ML, Ma L. Absence of Epstein-Barr virus in esophageal squamous cell carcinoma: a study of 74 cases using in-situ hybridization. J Clin Pathol Mol Pathol. 1995;48:M188–90.

    Article  CAS  Google Scholar 

  19. Wang ZK, Yang YS. Upper gastrointestinal microbiota and digestive diseases. World J Gastroenterol. 2013;19:1541–50.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gibson MK, Dhaliwal AS, Clemons NJ, Phillips WA, Dvorak K, Tong D, Law S, Pirchi ED, Räsänen J, Krasna MJ, Parikh K, Krishnadath KK, Chen Y, Griffiths L, Colleypriest BJ, Farrant JM, Tosh D, Das KM, Bajpai M. Barrett’s esophagus: cancer and molecular biology. Ann N Y Acad Sci. 2013;1300:296–314.

    Article  CAS  PubMed  Google Scholar 

  21. Lam KY, Tsao SW, Zhang D, Law S, He D, Ma L, Wong J. Prevalence and predictive value of p53 mutation in patients with esophageal squamous cell carcinomas: a prospective clinicopathological study and survival analysis of 70 patients. Int J Cancer. 1997;74:212–9.

    Article  CAS  PubMed  Google Scholar 

  22. Appelman HD, Matejcic M, Parker MI, Riddell RH, Salemme M, Swanson PE, Villanacci V. Progression of esophageal dysplasia to cancer. Ann N Y Acad Sci. 2014;1325:96–107.

    Article  PubMed  Google Scholar 

  23. Pack SD, Karkera JD, Zhuang Z, Pak ED, Balan KV, Hwu P, Park WS, Pham T, Ault DO, Glaser M, Liotta L, Detera-Wadleigh SD, Wadleigh RG. Molecular cytogenetic fingerprinting of esophageal squamous cell carcinoma by comparative genomic hybridization reveals a consistent pattern of chromosomal alterations. Genes Chromosomes Cancer. 1999;25:160–8.

    Article  CAS  PubMed  Google Scholar 

  24. Walch AK, Zitzelsberger HF, Bruch J, Keller G, Angermeier D, Aubele MM, Mueller J, Stein H, Braselmann H, Siewert JR, Höfler H, Werner M. Chromosomal imbalances in Barrett's adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence. Am J Pathol. 2000;156:555–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kwong D, Lam A, Guan X, Law S, Tai A, Wong J, Sham J. Chromosomal aberrations in esophageal squamous cell carcinoma among Chinese: gain of 12p predicts poor prognosis after surgery. Hum Pathol. 2004;35:309–16.

    Article  CAS  PubMed  Google Scholar 

  26. Qin YR, Wang LD, Fan ZM, Kwong D, Guan XY. Comparative genomic hybridization analysis of genetic aberrations associated with development of esophageal squamous cell carcinoma in Henan, China. World J Gastroenterol. 2008;14:1828–35.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tang JCO, Lam KY, Law S, Wong J, Srivastava G. Detection of genetic alterations in esophageal squamous cell carcinomas and adjacent normal epithelia by comparative DNA fingerprinting using inter-simple sequence repeat PCR. Clin Cancer Res. 2001;7:1539–45.

    CAS  PubMed  Google Scholar 

  28. Hu YC, Lam KY, Law S, Wong J, Srivastava G. Identification of differentially expressed in esophageal squamous cell carcinoma (ESCC) by cDNA expression array: overexpression of Fra-1, Neogenin, Id-1 and CDC25B genes in ESCC. Clin Cancer Res. 2001;7:2213–21.

    CAS  PubMed  Google Scholar 

  29. Fatima S, Chui CH, Tang WK, Hui KS, Au HW, Li WY, Wong MM, Cheung F, Tsao SW, Lam KY, Beh PS, Wong J, Law S, Srivastava G, Ho KP, Chan AS, Tang JC. Transforming capacity of two novel genes JS-1 and JS-2 located in chromosome 5p and their overexpression in human esophageal squamous cell carcinoma. Int J Mol Med. 2006;17:159–70.

    CAS  PubMed  Google Scholar 

  30. Tang WK, Chui CH, Fatima S, Kok SH, Pak KC, Ou TM, Hui KS, Wong MM, Wong J, Law S, Tsao SW, Lam KY, Beh PS, Srivastava G, Chan AS, Ho KP, Tang JC. Oncogenic properties of a novel gene JK-1 located in chromosome 5p and its overexpression in human esophageal squamous cell carcinoma. Int J Mol Med. 2007;19:915–23.

    CAS  PubMed  Google Scholar 

  31. Goh XY, Rees JR, Paterson AL, Chin SF, Marioni JC, Save V, O’Donovan M, Eijk PP, Alderson D, Ylstra B, Caldas C, Fitzgerald RC. Integrative analysis of array-comparative genomic hybridisation and matched gene expression profiling data reveals novel genes with prognostic significance in oesophageal adenocarcinoma. Gut. 2011;60:1317–26.

    Article  CAS  PubMed  Google Scholar 

  32. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340:284–95.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, Liang Y, Rivkin E, Wang J, Whitty B, Wong-Erasmus M, Yao L, Kasprzyk A. International cancer genome consortium data portal–a one-stop shop for cancer genomics data. Database (Oxford). 2011;2011:bar026.

    Google Scholar 

  34. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, Ma X, Liu L, Zhao Z, Huang X, Fan J, Dong L, Chen G, Ma L, Yang J, Chen L, He M, Li M, Zhuang X, Huang K, Qiu K, Yin G, Guo G, Feng Q, Chen P, Wu Z, Wu J, Ma L, Zhao J, Luo L, Fu M, Xu B, Chen B, Li Y, Tong T, Wang M, Liu Z, Lin D, Zhang X, Yang H, Wang J, Zhan Q. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–5.

    Article  CAS  PubMed  Google Scholar 

  35. Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, Bandla S, Imamura Y, Schumacher SE, Shefler E, McKenna A, Carter SL, Cibulskis K, Sivachenko A, Saksena G, Voet D, Ramos AH, Auclair D, Thompson K, Sougnez C, Onofrio RC, Guiducci C, Beroukhim R, Zhou Z, Lin L, Lin J, Reddy R, Chang A, Landrenau R, Pennathur A, Ogino S, Luketich JD, Golub TR, Gabriel SB, Lander ES, Beer DG, Godfrey TE, Getz G, Bass AJ. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45:478–86.

    Article  CAS  PubMed  Google Scholar 

  36. Nones K, Waddell N, Wayte N, Patch AM, Bailey P, Newell F, Holmes O, Fink JL, Quinn MC, Tang YH, Lampe G, Quek K, Loffler KA, Manning S, Idrisoglu S, Miller D, Xu Q, Waddell N, Wilson PJ, Bruxner TJ, Christ AN, Harliwong I, Nourse C, Nourbakhsh E, Anderson M, Kazakoff S, Leonard C, Wood S, Simpson PT, Reid LE, Krause L, Hussey DJ, Watson DI, Lord RV, Nancarrow D, Phillips WA, Gotley D, Smithers BM, Whiteman DC, Hayward NK, Campbell PJ, Pearson JV, Grimmond SM, Barbour AP. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014;5:5224.

    Article  CAS  PubMed  Google Scholar 

  37. Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, Garg M, Liu LZ, Yang H, Yin D, Shi ZZ, Jiang YY, Gu WY, Gong T, Zhang Y, Xu X, Kalid O, Shacham S, Ogawa S, Wang MR, Koeffler HP. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gopalan V, Pillai S, Ebrahimi F, Salajegheh A, Lam TC, Le TK, Langsford N, Ho YH, Smith RA, Lam AK. Regulation of microRNA-1288 in colorectal cancer: altered expression and its clinicopathological significance. Mol Carcinog. 2014;53:E36–44.

    Article  CAS  PubMed  Google Scholar 

  39. Ebrahimi F, Gopalan V, Smith RA, Lam AK. miR-126 in human cancers: clinical roles and current perspectives. Exp Mol Pathol. 2014;96:98–107.

    Google Scholar 

  40. Maroof H, Salajegheh A, Smith RA, Lam AK. Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp Mol Pathol. 2014;97:298–304.

    Article  CAS  PubMed  Google Scholar 

  41. Vosgha H, Salajegheh A, Smith RA, Lam AK. The Important Roles of miR-205 in normal physiology, cancers and as a potential therapeutic target. Curr Cancer Drug Targets. 2014;14:621–37.

    Article  CAS  PubMed  Google Scholar 

  42. Yu H, Duan B, Jiang L, Lin M, Sheng H, Huang J, Gao H. Serum miR-200c and clinical outcome of patients with advanced esophageal squamous cancer receiving platinum-based chemotherapy. Am J Transl Res. 2013;6:71–7.

    PubMed Central  PubMed  Google Scholar 

  43. Wu C, Li M, Hu C, Duan H. Clinical significance of serum miR-223, miR-25 and miR-375 in patients with esophageal squamous cell carcinoma. Mol Biol Rep. 2014;41:1257–66.

    Article  CAS  PubMed  Google Scholar 

  44. Matsuzaki J, Suzuki H. MicroRNAs in Barrett’s esophagus: future prospects. Front Genet. 2014;5:69.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Sakai NS, Samia-Aly E, Barbera M, Fitzgerald RC. A review of the current understanding and clinical utility of miRNAs in esophageal cancer. Semin Cancer Biol. 2013;23:512–21.

    Article  CAS  PubMed  Google Scholar 

  46. Gu J, Wang Y, Wu X. MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr Pharm Des. 2013;19:1292–300.

    Article  CAS  PubMed  Google Scholar 

  47. Amin M, Lam AK. Current perspectives of mi-RNA in oesophageal adenocarcinoma: Roles in predicting carcinogenesis, progression and values in clinical management. Exp Mol Pathol. 2015;98:411–8.

    Article  CAS  PubMed  Google Scholar 

  48. Islam F, Qiao B, Smith RA, Gopalan V, Lam AK. Cancer stem cell: Fundamental experimental pathological concepts and updates. Exp Mol Pathol. 2015;98:184–91.

    Article  CAS  PubMed  Google Scholar 

  49. Qiao B, Gopalan V, Chen Z, Smith RA, Tao Q, Lam AKY. Epithelial-mesenchymal transition and mesenchymal-epithelial transition are essential for the acquisition of stem cell properties in hTERT-immortalised oral epithelial cells. Bio Cell. 2012;104:476–89.

    Article  CAS  Google Scholar 

  50. Islam F, Gopalan V, Smith RA, Lam AK. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res. 2015;335:135–47.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Z, Da Silva TG, Jin K, Han X, Ranganathan P, Zhu X, Sanchez-Mejias A, Bai F, Li B, Fei DL, Weaver K, Carpio RV, Moscowitz AE, Koshenkov VP, Sanchez L, Sparling L, Pei XH, Franceschi D, Ribeiro A, Robbins DJ, Livingstone AS, Capobianco AJ. Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma. Cancer Res. 2014;74:6364–74.

    Article  CAS  PubMed  Google Scholar 

  52. di Pietro M, Alzoubaidi D, Fitzgerald RC. Barrett’s esophagus and cancer risk: how research advances can impact clinical practice. Gut Liver. 2014;8:356–70.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ong CAJ, Lao-Sirieix P, Fitzgerald RC. Biomarkers in Barrett’s esophagus and esophageal adenocarcinoma: predictors of progression and prognosis. World J Gastroenterol. 2010;16:5669–81.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Chen M, Huang J, Zhu Z, Zhang J, Li K. Systematic review and meta-analysis of tumor biomarkers in predicting prognosis in esophageal cancer. BMC Cancer. 2013;13:539.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Shang L, Liu HJ, Hao JJ, Jiang YY, Shi F, Zhang Y, Cai Y, Xu X, Jia XM, Zhan QM, Wang MR. A panel of overexpressed proteins for prognosis in esophageal squamous cell carcinoma. PLoS One. 2014;9, e111045.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Chung Y, Lam AK, Luk JM, Law S, Chan KW, Lee PY, Wong J. Altered E-cadherin expression and p120 catenin localization in esophageal squamous cell carcinoma. Ann Surg Oncol. 2007;14:3260–7.

    Article  PubMed  Google Scholar 

  57. Chan D, Tsoi MY, Liu CD, Chan SH, Law SY, Chan KW, Chan YP, Gopalan V, Lam AK, Tang JC. Oncogene GAEC1 regulates CAPN10 expression which predicts survival in esophageal squamous cell carcinoma. World J Gastroenterol. 2013;19:2772–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lam KY, Law S, Lo T, Tung HM, Wong J. The clinicopathological significance of p21 and p53 expression in esophageal squamous cell carcinoma: an analysis of 153 patients. Am J Gastroenterol. 1999;94:2060–8.

    Article  CAS  PubMed  Google Scholar 

  59. Lam KY, Law SYK, So MKP, Fok M, Ma LT, Wong J. Prognostic implication of proliferative markers MIB-1 and PC 10 in esophageal squamous cell carcinoma. Cancer. 1996;77:7–13.

    Article  CAS  PubMed  Google Scholar 

  60. Tong DK, Law S, Kwong DL, Chan KW, Lam AK, Wong KH. Histological regression of squamous esophageal carcinoma assessed by percentage of residual viable cells after neoadjuvant chemoradiation is an important prognostic factor. Ann Surg Oncol. 2010;17:2184–92.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Lam KY, Law S, Ma LT, Ong SK, Wong J. Pre-operative chemotherapy for squamous cell carcinoma of the esophagus: do histological assessment and p53 overexpression predict chemo-responsiveness? Eur J Cancer. 1997;33:1221–5.

    Article  CAS  PubMed  Google Scholar 

  62. Okumura H, Uchikado Y, Setoyama T, Matsumoto M, Owaki T, Ishigami S, Natsugoe S. Biomarkers for predicting the response of esophageal squamous cell carcinoma to neoadjuvant chemoradiation therapy. Surg Today. 2014;44:421–8.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang SS, Huang QY, Yang H, Xie X, Luo KJ, Wen J, Cai XL, Yang F, Hu Y, Fu JH. Correlation of p53 status with the response to chemotherapy-based treatment in esophageal cancer: a meta-analysis. Ann Surg Oncol. 2013;20:2419–27.

    Article  PubMed  Google Scholar 

  64. Bain GH, Petty RD. Predicting response to treatment in gastroesophageal junction adenocarcinomas: combining clinical, imaging, and molecular biomarkers. Oncologist. 2010;15:270–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Imdahl A, Jenkner J, Ihling C, Rückauer K, Farthmann EH. Is MIB-1 proliferation index a predictor for response to neoadjuvant therapy in patients with esophageal cancer? Am J Surg. 2000;179:514–20.

    Article  CAS  PubMed  Google Scholar 

  66. Ung L, Lam AK, Morris DL, Chua TC. Tissue-based biomarkers predicting outcomes in metastatic colorectal cancer: a review. Clin Transl Oncol. 2014;16:425–35.

    Article  CAS  PubMed  Google Scholar 

  67. Pakneshan S, Salajegheh A, Smith RA, Lam AK. Clinicopathological relevance of BRAF mutations in human cancer. Pathology. 2013;45:346–56.

    Article  CAS  PubMed  Google Scholar 

  68. Rahman MA, Salajegheh A, Smith RA, Lam AK. BRAF inhibitors: from the laboratory to clinical trials. Crit Rev Oncol Hematol. 2014;90:220–32.

    Article  CAS  PubMed  Google Scholar 

  69. Rahman MA, Salajegheh A, Smith RA, Lam AK. BRAF inhibitor therapy for melanoma, thyroid and colorectal cancers: development of resistance and future prospects. Curr Cancer Drug Targets. 2014;14:128–43.

    Article  CAS  PubMed  Google Scholar 

  70. O’Sullivan CC, Connolly RM. Pertuzumab and its accelerated approval: evolving treatment paradigms and new challenges in the management of HER2-positive breast cancer. Oncology (Williston Park). 2014;28:186–94.

    Google Scholar 

  71. Wiedmann MW, Mössner J. New and emerging combination therapies for esophageal cancer. Cancer Manag Res. 2013;5:133–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kordes S, Cats A, Meijer SL, van Laarhoven HW. Targeted therapy for advanced esophagogastric adenocarcinoma. Crit Rev Oncol Hematol. 2014;90:68–76.

    Article  CAS  PubMed  Google Scholar 

  73. Xu WW, Li B, Lam AK, Tsao SW, Law SY, Chan KW, Yuan QJ, Cheung AL. Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy. Oncotarget. 2015;6:1790–805.

    Google Scholar 

  74. Nakajima M, Kato H. Treatment options for esophageal squamous cell carcinoma. Expert Opin Pharmacother. 2013;14:1345–54.

    Article  CAS  PubMed  Google Scholar 

  75. Boland PM, Burtness B. Esophageal carcinoma: are modern targeted therapies shaking the rock? Curr Opin Oncol. 2013;25:417–24.

    Article  CAS  PubMed  Google Scholar 

  76. Tang JCO, Wan TSK, Wong N, Pang E, Lam KY, Law SYK, Chow LMC, Ma ESK, Chan LC, Wong J, Srivastava G. Establishment and characterization of a new xenograft-derived human esophageal squamous cell line SLMT-1 of Chinese origin. Cancer Genet Cytogenet. 2001;124:36–41.

    Article  CAS  PubMed  Google Scholar 

  77. Hu YC, Lam KY, Wan TSK, Fang WG, Ma ESK, Chan LC, Srivastava G. Establishment and characterization of HKESC-1, a new cancer cell line from human esophageal squamous cell carcinoma. Cancer Genet Cytogenet. 2000;118:112–20.

    Article  CAS  PubMed  Google Scholar 

  78. Hu YC, Lam KY, Law SYK, Wan TSK, Ma ESK, Kwong YL, Chan LC, Wong J, Srivastava G. Establishment, characterization, karyotyping, and comparative genomic hybridization analysis of HKESC-2 and HKESC-3: two newly established human esophageal squamous cell lines. Cancer Genet Cytogenet. 2002;135:120–7.

    Article  CAS  PubMed  Google Scholar 

  79. Boonstra JJ, Tilanus HW, Dinjens WN. Translational research on esophageal adenocarcinoma: from cell line to clinic. Dis Esophagus. 2013;28:90–6. doi:10.1111/dote.12095.

    Article  PubMed  Google Scholar 

  80. Gros SJ. Orthotopic models of esophageal carcinoma and their use in drug discovery. Curr Protoc Pharmacol. 2011; Chapter 14:Unit14.20. doi:10.1002/0471141755.ph1420s54.

  81. Furihata T, Sakai T, Kawamata H, Omotehara F, Shinagawa Y, Imura J, Ueda Y, Kubota K, Fujimori T. A new in vivo model for studying invasion and metastasis of esophageal squamous cell carcinoma. Int J Oncol. 2001;19:903–7.

    CAS  PubMed  Google Scholar 

  82. Hori T, Yamashita Y, Ohira M, Matsumura Y, Muguruma K, Hirakawa K. A novel orthotopic implantation model of human esophageal carcinoma in nude rats: CD44H mediates cancer cell invasion in vitro and in vivo. Int J Cancer. 2001;92:489–96.

    Article  CAS  PubMed  Google Scholar 

  83. Ip JC, Ko JM, Yu VZ, Chan KW, Lam AK, Law S, Tong DK, Lung ML. A versatile Orthotopic nude mouse model for study of esophageal squamous cell carcinoma. Biomed Res Int. 2015;2015:910715.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred King-yin Lam MBBS, MD, PhD, FRCPA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lam, A.Ky. (2015). Cellular and Molecular Biology of Esophageal Cancer. In: Saba, N., El-Rayes, B. (eds) Esophageal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-20068-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20068-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20067-5

  • Online ISBN: 978-3-319-20068-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics