Skip to main content

The Black Hole Uncertainty Principle Correspondence

  • Chapter
  • First Online:
1st Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 170))

Abstract

The Black Hole Uncertainty Principle correspondence proposes a connection between the Uncertainty Principle on microscopic scales and black holes on macroscopic scales. This is manifested in a unified expression for the Compton wavelength and Schwarzschild radius. It is a natural consequence of the Generalized Uncertainty Principle, which suggests corrections to the Uncertainty Principle as the energy increases towards the Planck value. It also entails corrections to the event horizon size as the black hole mass falls to the Planck value, leading to the concept of a Generalized Event Horizon. One implication of this is that there could be sub-Planckian black holes with a size of order their Compton wavelength. Loop quantum gravity suggests the existence of black holes with precisely this feature. The correspondence leads to a heuristic derivation of the black hole temperature and suggests how the Hawking formula is modified in the sub-Planckian regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Adler, D.I. Santiago, Mod. Phys. Lett. A 14, 1371 (1999)

    Article  ADS  Google Scholar 

  2. R.J. Adler, P. Chen, D.I. Santiago, Gen. Rel. Grav. 33, 2101 (2001)

    Google Scholar 

  3. P. Chen, R.J. Adler. arXiv:0205106

  4. R.J. Adler. arXiv:1001.1205 [gr-qc]

  5. M. Maggiore, Phys. Lett. B 304, 65 (1993)

    Article  ADS  Google Scholar 

  6. M. Maggiore, Phys. Lett. B 319, 83 (1993)

    Google Scholar 

  7. M. Maggiore, Phys. Rev. D 49, 5182 (1994)

    Google Scholar 

  8. A. Ashtekar, S. Fiarhurst, J.L. Willis, Class. Quant. Grav. 20, 1031 (2003)

    Article  ADS  MATH  Google Scholar 

  9. G.M. Hossain, V. Husain, S.S. Seahra, Class. Quant. Grav. 207, 165013 (2010)

    Article  MathSciNet  Google Scholar 

  10. B.S. Kay, Class. Quant. Grav. 15, L89–L98 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. B.S. Kay, V. Abyaneh. arXiv:0710.0992 (2007)

  12. G. Veneziano, Europhys. Lett. 2, 199 (1986)

    Article  ADS  Google Scholar 

  13. E. Witten, Phys. Today April 24 (1996)

    Google Scholar 

  14. F. Scardigli, Phys. Lett. B 452, 39 (1999)

    Article  ADS  Google Scholar 

  15. D.J. Gross, P.F. Mende, Nuc. Phys. B 303, 407 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Amati, M. Ciafaloni, G. Veneziano, Phys, Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  17. T. Yoneya, Mod. Phys. Lett. A 4, 1587 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  18. B.J. Carr, L. Modesto, I. Prémont-Schwarz. arXiv:1107.0708 [gr-qc]

  19. A. Bonnano, M. Reuter, Phys. Rev. D. 73, 083005 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Jizba, H. Kleinert, F. Scardigli, AIP Conf. Proc. 1446, 181 (2012)

    Google Scholar 

  21. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  22. A. Ashtekar, Class. Quant. Grav. 21, R53 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T. Thiemann, Lect. Notes Phys. 631, 41–135 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Thiemann, Lect. Notes Phys. 721, 185–263 (2007)

    Google Scholar 

  25. A. Ashtekar, Phys. Rev. Lett. 57, 2244–2247 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Modesto, Phys. Rev. D 70, 124009 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  27. L. Modesto, Class. Quant. Grav. 23, 5587–5602 (2006)

    Google Scholar 

  28. L. Modesto, Adv. High Energy Phys. 2008, 459290 (2008)

    Google Scholar 

  29. L. Modesto, Int. J. Theor. Phys (2010). arXiv:0811.2196 [gr-qc]

  30. L. Modesto, I. Premont-Schwarz, Phys. Rev. D 80, 064041 (2009)

    Article  ADS  Google Scholar 

  31. S.W. Hawking, Nature 248, 30 (1974)

    Google Scholar 

  32. S.W. Hawking, Comm. Math. Phys. 43, 199 (1975)

    Google Scholar 

  33. J. Mureika, P. Nicolini, Eur. Phys. J. Plus 128, 78 (2013)

    Article  Google Scholar 

  34. I. Maximiliano, J. Mureika, P. Nicolini, JHEP 1311, 139 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Carr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carr, B.J. (2016). The Black Hole Uncertainty Principle Correspondence. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_19

Download citation

Publish with us

Policies and ethics