Skip to main content

Quantum Black Holes and Effective Quantum Gravity Approaches

  • Chapter
  • First Online:
1st Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 170))

  • 939 Accesses

Abstract

One of the most exciting developments in theoretical physics in the last 20 years has been the realization that the scale of quantum gravity could be in the TeV region instead of the usually assumed \(10^{19}\) GeV. Indeed, the strength of gravity can be affected by the size of potential extra-dimensions [14] or the quantum fluctuations of a large hidden sector of particles [5]. A dramatic signal of quantum gravity in the TeV region would be the production of small black holes in high energy collisions of particles at colliders. The possibility of creating small black holes at colliders has led to some wonderful theoretical works on the formation of black holes in the collisions of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998). arXiv:hep-ph/9803315

  2. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 436, 257 (1998). arXiv:hep-ph/9804398

  3. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221

    Google Scholar 

  4. M. Gogberashvili, Int. J. Mod. Phys. D 11, 1635 (2002). arXiv:hep-ph/9812296

  5. X. Calmet, S.D.H. Hsu, D. Reeb, Phys. Rev. D 77, 125015 (2008). arXiv:0803.1836 [hep-th]

  6. D.M. Eardley, S.B. Giddings, Phys. Rev. D 66, 044011 (2002). arXiv:gr-qc/0201034

  7. S.D.H. Hsu, Phys. Lett. B 555, 92 (2003). arXiv:hep-ph/0203154

  8. S. Dimopoulos, G.L. Landsberg, Phys. Rev. Lett. 87, 161602 (2001). arXiv:hep-ph/0106295

  9. S.B. Giddings, S.D. Thomas, Phys. Rev. D 65, 056010 (2002). arXiv:hep-ph/0106219

  10. J.L. Feng, A.D. Shapere, Phys. Rev. Lett. 88, 021303 (2002). arXiv:hep-ph/0109106

  11. L.A. Anchordoqui, J.L. Feng, H. Goldberg, A.D. Shapere, Phys. Lett. B 594, 363 (2004). arXiv:hep-ph/0311365

  12. L.A. Anchordoqui, J.L. Feng, H. Goldberg, A.D. Shapere, Phys. Rev. D 65, 124027 (2002). arXiv:hep-ph/0112247

  13. L.A. Anchordoqui, J.L. Feng, H. Goldberg, A.D. Shapere, Phys. Rev. D 68, 104025 (2003). arXiv:hep-ph/0307228

  14. S. Hossenfelder, S. Hofmann, M. Bleicher, H. Stoecker, Phys. Rev. D 66, 101502 (2002). arXiv:hep-ph/0109085

  15. P. Meade, L. Randall, JHEP 0805, 003 (2008). arXiv:0708.3017 [hep-ph]

  16. X. Calmet, W. Gong, S.D.H. Hsu, Phys. Lett. B 668, 20 (2008). arXiv:0806.4605 [hep-ph]

  17. X. Calmet, G. Landsberg, in Lower Dimensional Quantum Black Holes, chapter 7, eds. by A.J. Bauer, D.G. Eiffel. Black Holes: Evolution, Theory and Thermodynamics (Nova Publishers, New York, 2012). arXiv:1008.3390 [hep-ph]

  18. X. Calmet, D. Fragkakis, N. Gausmann, Eur. Phys. J. C 71, 1781 (2011). arXiv:1105.1779 [hep-ph]

  19. X. Calmet, D. Fragkakis, N. Gausmann, in Non Thermal Small Black Holes, chapter 8, eds. by A.J. Bauer, D.G.Eiffel. Black Holes: Evolution, Theory and Thermodynamics (Nova Publishers, New York, 2012). arXiv:1201.4463 [hep-ph]

  20. X. Calmet, N. Gausmann, Non-thermal quantum black holes with quantized masses. Int. J. Mod. Phys. A 28, 1350045 (2013). arXiv:1209.4618 [hep-ph]

    Google Scholar 

  21. G.L. Alberghi, L. Bellagamba, X. Calmet, R. Casadio, O. Micu, Eur. Phys. J. C 73, 2448 (2013). arXiv:1303.3150 [hep-ph]

  22. X. Calmet, M. Feliciangeli, Phys. Rev. D 78, 067702 (2008). arXiv:0806.4304 [hep-ph]

  23. X. Calmet, L.I. Caramete, O. Micu, JHEP 1211, 104 (2012). arXiv:1204.2520 [hep-ph]

  24. N. Arsene, X. Calmet, L.I. Caramete, O. Micu. arXiv:1303.4603 [hep-ph]

  25. X. Calmet, A review of quantum gravity at the Large Hadron Collider. Mod. Phys. Lett. A 25, 1553 (2010). arXiv:1005.1805 [hep-ph]

    Google Scholar 

  26. G. Aad et al., ATLAS Collaboration. arXiv:1311.2006 [hep-ex]

  27. M.V.Savina [CMS Collaboration], Phys. Atom. Nucl. 76, 1090 (2013) [Yad. Fiz. 76(9), 11501159 (2013)]

    Google Scholar 

  28. C.D. Hoyle, D.J. Kapner, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, U. Schmidt, H.E. Swanson, Phys. Rev. D 70, 042004 (2004). arXiv:hep-ph/0405262

  29. X. Calmet. arXiv:1308.6155 [gr-qc]

  30. M. Atkins, X. Calmet. Phys. Rev. Lett. 110(5), 051301 (2013). arXiv:1211.0281 [hep-ph]

  31. R. Onofrio, Eur. Phys. J. C 72, 2006 (2012). arXiv:1303.5695 [gr-qc]

  32. M. Shaposhnikov, C. Wetterich, Phys. Lett. B 683, 196 (2010). arXiv:0912.0208 [hep-th]

  33. F.L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 [hep-th]

  34. A.O. Barvinsky, A.Y. Kamenshchik, A.A. Starobinsky, JCAP 0811, 021 (2008). arXiv:0809.2104 [hep-ph]

  35. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, C. Steinwachs, JCAP 0912, 003 (2009). arXiv:0904.1698 [hep-ph]

  36. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, C. Steinwachs, Eur. Phys. J. C 72, 2219 (2012). arXiv:0910.1041 [hep-ph]

  37. A. De Simone, M.P. Hertzberg, F. Wilczek, Phys. Lett. B 678, 1 (2009). arXiv:0812.4946 [hep-ph]

  38. F. Bezrukov. arXiv:1307.0708 [hep-ph]

  39. R.N. Lerner, J. McDonald, JCAP 1004, 015 (2010). arXiv:0912.5463 [hep-ph]

  40. C.P. Burgess, H.M. Lee, M. Trott, JHEP 1007, 007 (2010). arXiv:1002.2730 [hep-ph]

  41. M. Atkins, X. Calmet, Phys. Lett. B 697, 37 (2011). arXiv:1011.4179 [hep-ph]

  42. M.P. Hertzberg, JHEP 1011, 023 (2010). arXiv:1002.2995 [hep-ph]

  43. X. Calmet, R. Casadio. arXiv:1310.7410 [hep-ph]

  44. U. Aydemir, M.M. Anber, J.F. Donoghue, Phys. Rev. D 86, 014025 (2012). arXiv:1203.5153 [hep-ph]

Download references

Acknowledgments

This work is supported in part by the European Cooperation in Science and Technology (COST) action MP0905 “Black Holes in a Violent Universe” and by the Science and Technology Facilities Council (grant number ST/J000477/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Calmet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calmet, X. (2016). Quantum Black Holes and Effective Quantum Gravity Approaches. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_18

Download citation

Publish with us

Policies and ethics