Skip to main content

How to Amplify Photons

  • Chapter
  • First Online:
Third-Generation Femtosecond Technology

Part of the book series: Springer Theses ((Springer Theses))

  • 1054 Accesses

Abstract

Stimulated emission and optical parametric amplification (OPA) lead to efficient amplification of photons. In stimulated emission, the amplification is limited by amplified spontaneous emission (ASE) in the gain medium, and the amplification bandwidth to the energy level structure of a laser active medium and gain narrowing. In this process the energy is stored in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This part is adapted from (Fattahi et al 2014).

References

  • Augstov PA, Shvarts KK (1980) The temperature and light intensity dependence of photorefraction in LiNbO3. Appl Phys 21(2):191–194

    Google Scholar 

  • Boyd RW (2003) Nonlinear optics

    Google Scholar 

  • Bromage J, Rothhardt J, Hädrich S, Dorrer C, Jocher C, Demmler S, Limpert J, Tünnermann A, Zuegel JD (2011) Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers. Opt Exp 19(18):16797–16808

    Google Scholar 

  • Cerullo G, De Silvestri S (2003) Ultrafast optical parametric amplifiers. Rev Sci Instrum 74(1):1

    Google Scholar 

  • Deng Y, Schwarz A, Fattahi H, Ueffing M, Gu X, Ossiander M, Metzger T, Pervak V, Ishizuki H, Taira T, Kobayashi T, Marcus G, Krausz F, Kienberger R, Karpowicz N (2012) Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 \(\upmu \)m. Opt Lett 37(23):4973–4975

    Google Scholar 

  • Dmitriev VG, Gurzadyan GG, Nikogosyan DN (1999) Handbook of nonlinear optical crystals, p 414

    Google Scholar 

  • Dubietis A, Tamošauskas G, Varanavičius A, Valiulis G (2000) Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm. App Opt 39(15):2437–2440

    Google Scholar 

  • Fattahi H, Barros HG, Gorjan M, Nubbemeyer T, Alsaif B, Teisset CY, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng XT, Arisholm G, Ciappina M, Yakovlev VS, Kim D-E, Azzeer AM, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F (2014) Third-generation femtosecond technology. Optica 1(1):45–63

    Google Scholar 

  • Furukawa Y, Kitamura K, Takekawa S, Miyamoto A, Terao M, Suda N (2000) Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations. Appl Phys Lett 77(16):2494–2496

    Google Scholar 

  • Gale GM, Cavallari M, Driscoll TJ, Hache F (1995) Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. Opt Lett 20(14):1562–1564

    Google Scholar 

  • Gale GM, Cavallari M, Hache F (1998) Femtosecond visible optical parametric oscillator. J Opt Soc Am B 15(2):702–714

    Google Scholar 

  • Herrmann D, Tautz R, Tavella F, Krausz F, Veisz L (2010c) Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses. Opt Exp 18(5):4170–4183

    Google Scholar 

  • Nakatani H, Bosenberg WR, Cheng LK, Tang CL (1988) Laser-induced damage in beta-barium metaborate. Appl Phys Lett 53(26):2587–2589

    Google Scholar 

  • Pires H, Galimberti M, Figueira G (2014) Numerical evaluation of ultrabroadband parametric amplification in YCOB. J Opt Soc Am B 31(11):2608–2614

    Google Scholar 

  • Riedle E, Beutter M, Lochbrunner S, Piel J, Schenkl S, Spörlein S, Zinth W (2000) Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR. Appl Phys B 71(3):457–465

    Google Scholar 

  • Rothhardt J, Demmler S, Hädrich S, Limpert J, Tünnermann A (2012) Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt Exp 20(10):10870–10878

    Google Scholar 

  • Schultze M, Binhammer T, Steinmann A, Palmer G, Emons M, Morgner U (2010) Few-cycle OPCPA system at 143 kHz with more than 1 microJ of pulse energy. Opt Exp 18(3):2836–2841

    Google Scholar 

  • Schmidt BE, Thiré N, Boivin M, Laramée A, Poitras F, Lebrun G, Ozaki T, Ibrahim H, Légaré F (2014) Frequency domain optical parametric amplification. Nat Commun 5:3643–3648

    Google Scholar 

  • Skrobol C, Ahmad I, Klingebiel S, Wandt C, Trushin SA, Major Z, Krausz F, Karsch S (2012) Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm. Opt Exp 20(4):4619–4629

    Google Scholar 

  • Stuart B, Feit M, Herman S, Rubenchik A, Shore B, Perry M (1996) Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys Rev B 53(4):1749–1761

    Google Scholar 

  • Thai A, Skrobol C, Bates PK, Arisholm G, Major Z, Krausz F, Karsch S, Biegert J (2010) Simulations of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects. Opt Lett 35(20):3471–3473

    Google Scholar 

  • Teisset C, Schultze M, Bessing R, Haefner M, Prinz S, Sutter D, Metzger T (2013) 300 W picosecond thin-disk regenerative amplifier at 10 kHz repetition rate. In: Huber G, Moulton P (eds) Advanced solid-state lasers congress postdeadline, JTh5A.1. Washington, D.C., USA

    Google Scholar 

  • Wnuk P, Stepanenko Y, Radzewicz C (2010) High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier. Opt Exp 18(8):7911–7916

    Google Scholar 

  • Zhao B, Jiang Y, Sueda K, Miyanaga N, Kobayashi T (2008) Ultrabroadband noncollinear optical parametric amplification with LBO crystal. Opt Exp 16(23):18863–18868

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanieh Fattahi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fattahi, H. (2016). How to Amplify Photons. In: Third-Generation Femtosecond Technology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20025-5_2

Download citation

Publish with us

Policies and ethics