Skip to main content

Atomistic Simulations in bcc Metals

  • Chapter
  • First Online:
Stochastic Dynamics of Crystal Defects

Part of the book series: Springer Theses ((Springer Theses))

  • 555 Accesses

Abstract

It is clear that numerical methods essential when trying to understand the detailed atomic structure and dynamics. The most popular quantum mechanical approach is density functional theory (Martin, Electronic structure: basic theory and practical methods, 2004, [1]) (DFT), which exploits an isomorphism between the ground state wave function and ground state electron density to approach the many-body Schrödinger equation variationally, often allowing efficient evaluation of complex structures and energy landscapes. However, even with significant simplifications to the underlying Hamiltonian such techniques are currently limited to less than 500 metallic atoms, meaning that they only be used to inform coarse grained models of atomic interaction. At present, short segments of screw dislocation cores can be simulated in DFT allowing accurate parametrisation of the Peierls barrier and dislocation formation energies, along with similar properties for point defect formation energies, as well as bulk properties such as the lattice parameter and bulk modulus (Marinica et al., J Phys Condens Matter 25(39):395502, 2013, [2]). It is the aim of any coarse grained model to quantitatively reproduce these features as accurately as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Marinica MC, Ventelon L, Gilbert MR, Proville L, Dudarev SL, Marian J, Bencteux G, Willaime F (2013) Interatomic potentials for modelling radiation defects and dislocations in tungsten. J Phys Condens Matter 25(39):395502

    Article  Google Scholar 

  3. Born M, Oppenheimer R (1927) Zur Quantentheorie der Molekeln. Annalen der Physik 389(20):457–484

    Article  ADS  Google Scholar 

  4. Ashcroft NW, Mermin ND (1976) Solid state physics. Holt-Saunders international editions: science: physics. Holt, Rinehart and Winston

    Google Scholar 

  5. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443

    Article  ADS  Google Scholar 

  6. Argon AS (2008) Strengthening mechanisms in crystal plasticity. Oxford series on materials modelling. Oxford University Press, Oxford

    Google Scholar 

  7. Queyreau S, Marian J, Gilbert MR, Wirth BD (2011) Edge dislocation mobilities in bcc Fe obtained by molecular dynamics. Phys Rev B 84(6):64106

    Article  ADS  Google Scholar 

  8. Monnet G, Terentyev D (2009) Structure and mobility of the \(12{<}111{>}112\) edge dislocation in BCC iron studied by molecular dynamics. Acta Mater 57(5): 1416–1426

    Google Scholar 

  9. Rodney D, Proville L (2009) Stress-dependent Peierls potential: influence on kink-pair activation. Phys Rev B 79(9):94108

    Article  ADS  Google Scholar 

  10. Hirth JP, Lothe J (1991) Theory of dislocations. Malabar, Krieger

    Google Scholar 

  11. Bulatov VV, Cai W (2003) Computer simulations of dislocations. Oxford University Press, Oxford

    Google Scholar 

  12. Derlet PM, Gilbert MR, Dudarev SL (2011) Simulating dislocation loop internal dynamics and collective diffusion using stochastic differential equations. Phys Rev B 84(13):134109

    Article  ADS  Google Scholar 

  13. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  ADS  MATH  Google Scholar 

  14. Gordon PA, Neeraj T, Mendelev MI (2011) Screw dislocation mobility in BCC metals: a refined potential description for \(\alpha \)-Fe. Philos Mag 91(30):3931–3945

    Article  ADS  Google Scholar 

  15. Clouet E, Ventelon L, Willaime F (2009) Dislocation core energies and core fields from first principles. Phys Rev Lett 102(5):55502

    Article  ADS  Google Scholar 

  16. Bulatov VV, Justo JF, Cai W, Yip S (1997) Kink asymmetry and multiplicity in dislocation cores. Phys Rev Lett 79:5042–5045

    Article  ADS  Google Scholar 

  17. Wang G, Strachan A, Cagin T, Goddard WA (2003) Atomistic simulations of kinks in 1/2a\(<111>\) screw dislocations in bcc tantalum. Phys Rev B 68(22):224101

    Article  ADS  Google Scholar 

  18. Ventelon L, Willaime F, Leyronnas P (2009) Atomistic simulation of single kinks of screw dislocations in \(\alpha \)-Fe. J Nucl Mater 386388:26–29

    Article  ADS  Google Scholar 

  19. Clouet E, Garruchet S, Nguyen H, Perez M, Becquart CS (2008) Dislocation interaction with C in \(\alpha \)-Fe: a comparison between atomic simulations and elasticity theory. Acta Mater 56(14):3450–3460

    Article  Google Scholar 

  20. Li-Qun C, Chong-Yu W, Tao Y (2008) Atomistic simulation of kink structure on edge dislocation in bcc iron. Chin Phys B 17(2):662

    Article  ADS  Google Scholar 

  21. Chang J, Cai W, Bulatov VV, Yip S (2001) Dislocation motion in BCC metals by molecular dynamics. Mater Sci Eng A 309–310:160–163

    Article  Google Scholar 

  22. Dudarev SL, Gilbert MR, Arakawa K, Mori H, Yao Z, Jenkins ML, Derlet PM (2010) Langevin model for real-time Brownian dynamics of interacting nanodefects in irradiated metals. Phys Rev B 81(22):224107

    Article  ADS  Google Scholar 

  23. Reichl LE (2009) A modern course in statistical physics. Physics textbook. Wiley-VCH, Berlin

    Google Scholar 

  24. Lifson S, Jackson JL (1962) On the self-diffusion of ions in a polyelectrolyte solution. J Chem Phys 36:2410–2414

    Article  ADS  Google Scholar 

  25. Coffey W, Kalmykov YP, Waldron JT (2004) The Langevin equation: with applications to stochastic problems in physics, chemistry, and electrical engineering. World scientific, World scientific series in contemporary chemical physics. World Scientific, Singapore

    Google Scholar 

  26. Hänggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: fifty years after Kramers. Rev Mod Phys 62:251–342

    Article  ADS  Google Scholar 

  27. Einstein A, Fürth R (1956) Investigations on the theory of the Brownian movement. Dover books on physics. Dover Publications, New York

    Google Scholar 

  28. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Applied mathematics series. Dover Publications, New York

    Google Scholar 

  29. Dudarev SL (2008) The non-arrhenius migration of interstitial defects in bcc transition metals. Comptes Rendus Phys 9(34):409–417

    Article  ADS  Google Scholar 

  30. Gilbert MR, Queyreau S, Marian J (2011) Stress and temperature dependence of screw dislocation mobility in \(\alpha \)-Fe by molecular dynamics. Phys Rev B 84(17):174103

    Article  ADS  Google Scholar 

  31. Marian J, Wirth BD, Caro A, Sadigh B, Odette GR, Perlado JM, de la Rubia T (2002) Dynamics of self-interstitial cluster migration in pure \(\alpha \)-Fe and Fe-Cu alloys. Phys Rev B 65(14):144102

    Article  ADS  Google Scholar 

  32. Rong Z, Osetsky YN, Bacon DJ (2005) A model for the dynamics of loop drag by a gliding dislocation. Philos Mag 85(14):1473–1493

    Article  ADS  Google Scholar 

  33. Bacon DJ, Osetsky Y, Rodney D (2009) Dislocations obstacle interactions at the atomic level. Dislocations Solids 15:1–90

    Article  Google Scholar 

  34. Leibfried G (1950) Über den einfluß thermisch angeregter schallwellen auf die plastische deformation. Zeitschrift für Phys 127(4):344–356

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Nabarro FRN (1951) The interaction of screw dislocations and sound waves. Proc R Soc Lond A Math Phys Sci 209:278–290

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Vitek V (1974) Theory of the core structures of dislocations in BCC metals. Ccryst Lattice Defects 5(1668):1–34

    Google Scholar 

  37. Vitek V (2004) Core structure of screw dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding. Philos Mag 84:415–428

    Article  ADS  Google Scholar 

  38. Dudarev SL, Derlet PM (2005) A ‘magnetic’ interatomic potential for molecular dynamics simulations. J Phys Condens Matter 17(44):7097

    Article  ADS  Google Scholar 

  39. Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M (2003) Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag 83(35):3977–3994

    Article  ADS  Google Scholar 

  40. Itakura M, Kaburaki H, Yamaguchi M (2012) First-principles study on the mobility of screw dislocations in bcc iron. Acta Mater 60(9):3698–3710

    Article  Google Scholar 

  41. Ventelon L, Willaime F (2010) Generalized stacking-faults and screw-dislocation core-structure in bcc iron: a comparison between ab initio calculations and empirical potentials. Philos Mag 90(7–8):1063–1074

    Article  ADS  Google Scholar 

  42. Li J, Wang C-Z, Chang J, Cai W, Bulatov VV, Ho K-M, Yip S (2004) Core energy and Peierls stress of a screw dislocation in bcc molybdenum: a periodic-cell tight-binding study. Phys Rev B 70(10):104113

    Article  ADS  Google Scholar 

  43. Veiga RGA, Perez M, Becquart CS, Clouet E, Domain C (2011) Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in \(\alpha \)-iron. Acta Mater 59(18):6963–6974

    Article  Google Scholar 

  44. Seeger A, Schiller P (1966) In: Mason WP, Thurston RN (eds) Physical acoustics: principles and methods, volume 3 A, chapter 8. Academic Press, New York

    Google Scholar 

  45. Swinburne TD, Dudarev SL, Fitzgerald SP, Gilbert MR, Sutton AP (2013) Theory and simulation of the diffusion of kinks on dislocations in bcc metals. Phys Rev B 87(6):64108

    Article  ADS  Google Scholar 

  46. Zepeda-Ruiz LA, Rottler J, Wirth BD, Car R, Srolovitz DJ (2005) Self-interstitial transport in vanadium. Acta Mater 53(7):1985–1994

    Article  Google Scholar 

  47. Bitzek E, Gumbsch P (2005) Dynamic aspects of dislocation motion: atomistic simulations. Mater Sci Eng A 400:40–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Swinburne .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Swinburne, T.D. (2015). Atomistic Simulations in bcc Metals. In: Stochastic Dynamics of Crystal Defects. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20019-4_4

Download citation

Publish with us

Policies and ethics