Skip to main content

Nonlinear Mode Decomposition (NMD)

  • Chapter
  • First Online:
Nonlinear Mode Decomposition

Part of the book series: Springer Theses ((Springer Theses))

  • 1028 Accesses

Abstract

This chapter introduces and develops the Nonlinear Mode Decomposition method by combining the techniques considered in the previous sections together with some new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-T. Wu, Instantaneous frequency and wave shape functions (i). Appl. Comput. Harmon. Anal. 35(2), 181–189 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Schreiber, A. Schmitz, Surrogate time series. Physica D 142(3), 346–382 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Physica D 58(1), 77–94 (1992)

    Google Scholar 

  4. R.G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, T. Kreuz, Bivariate surrogate techniques: necessity, strengths, and caveats. Phys. Rev. E 68(6), 066202 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. R.Q. Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 65(4), 041903 (2002)

    Article  ADS  Google Scholar 

  6. D. Iatsenko, P.V.E. McClintock, A. Stefanovska, Linear and synchrosqueezed time-frequency representations revisited: overview, standards of use, reconstruction, resolution, concentration, and algorithms. Digital Signal Processing (in press) 2015. doi:10.1016/j.dsp.2015.03.004

  7. D. Iatsenko, P.V.E. McClintock, A. Stefanovska, Nonlinear Mode decomposition: a new noise-robust, adaptive decomposition method [preprint—arXiv:1207.5567], 2014

  8. J.D. Farmer, E. Ott, J.A. Yorke, The dimension of chaotic attractors. Physica D 7(1), 153–180 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  9. P. Grassberger, Generalized dimensions of strange attractors. Phys. Lett. A 97(6), 227–230 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Hentschel, I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8(3), 435–444 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Physica D 9(1), 189–208 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. J. Theiler, Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A 36(9), 4456 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Theiler, D. Prichard, Constrained-realization Monte-Carlo method for hypothesis testing. Physica D 94(4), 221–235 (1996)

    Article  MATH  ADS  Google Scholar 

  15. C. Stam, J. Pijn, W. Pritchard, Reliable detection of nonlinearity in experimental time series with strong periodic components. Physica D 112(3), 361–380 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. J. Theiler, T. Lookman, Statistical error in a chord estimator of correlation dimension: the “rule of fiv”. Intern. J. Bifurc. Chaos 3(3), 765–771 (1993)

    Article  MATH  Google Scholar 

  17. T. Schreiber, A. Schmitz, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635 (1996)

    Article  ADS  Google Scholar 

  18. The NMD Toolbox for MatLab, which contains all the needed codes, is freely available at http://www.physics.lancs.ac.uk/research/nbmphysics/diats/nmd/ (see also http://www.physics.lancs.ac.uk/research/nbmphysics/diats/tfr/)

  19. S. Mallat, A Wavelet Tour of Signal Processing, 3rd edn. (Academic Press, Burlington, 2008)

    Google Scholar 

  20. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

    Article  Google Scholar 

  22. M. Feldman, Analytical basics of the EMD: two harmonics decomposition. Mech. Syst. Sig. Proc. 23(7), 2059–2071 (2009)

    Article  Google Scholar 

  23. G. Rilling, P. Flandrin, One or two frequencies? The empirical mode decomposition answers. IEEE Trans. Sig. Proc. 56(1), 85–95 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Iatsenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iatsenko, D. (2015). Nonlinear Mode Decomposition (NMD). In: Nonlinear Mode Decomposition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20016-3_4

Download citation

Publish with us

Policies and ethics