Skip to main content

In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview

  • Chapter
Reviews of Environmental Contamination and Toxicology Volume 236

Abstract

Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

$:

Dollar

<:

Less than

>:

Greater than

2,4-D:

2,4-Dichlorophenoxyacetic acid

Ag:

Silver

Al:

Aluminium

AM:

Arbuscular mycorrhiza

As:

Arsenic

B:

Boron

Be:

Beryllium

BTEX:

Benzene toluene, ethylbenzene and xylenes

C:

Carbon

CCA:

Chromated copper arsenate

Cd:

Cadmium

CEC:

Contaminants of emerging concern

CFU:

Colony forming units

CN:

Cyanide

Co:

Cobalt

Cr:

Chromium

Cs:

Cesium

Cu:

Copper

DC:

Direct current

DCA:

Dichloroaniline

DCE:

Dichloroethane

DDT:

Dichlorodiphenyltrichloroethane

DNA:

Deoxyribonucleic acid

DNAPL:

Dense non-aqueous phase liquid

DPE:

Dual-phase extraction

DUS/HPO:

Dynamic underground steam stripping with hydrous oxidation

EDTA:

Ethylenediaminetetraacetic acid

EPH:

Extractable petroleum hydrocarbons

EZVI:

Emulsified zero-valent iron

FCC:

Federal Communications Commission

Fe:

Iron

Fe2O3 :

Iron oxide

FRTR:

Federal Remediation Technologies Roundtable

g:

Gram

GAC:

Granular activated carbon

GHz:

Gigahertz

h:

Hour

HCB:

Hexachlorobenzene

Hg:

Mercury

HMW:

High molecular weight

HPCD:

Hydroxypropyl cyclodextrine

HTTD:

High temperature thermal desorption

IAA:

Indole-3-acetic acid

ISTD:

In-situ thermal desorption

ISV:

In-situ vitrification

J:

Joule

K:

Potassium

kg:

Kilogram

kW:

Kilo-watt

L:

Litre

LNAPL:

Light non-aqueous phase liquid

LTTD:

Low temperature thermal desorption

m:

Metre

M:

Molar

MFCs:

Microbial fuel cells

mg:

Milligram

Mg:

Megagram

MHz:

Megahertz

min:

Minute

Mn:

Manganese

MPE:

Multi-phase extraction

MTBE:

Methyl tertiary-butyl ether

N:

Nitrogen

n:

Nano

NAD:

Nicotinamide adenine dinucleotide

NAPL:

Non-aqueous phase liquid

NH3 :

Ammonia

Ni:

Nickel

NO3 :

Nitrate

P:

Phosphorous

PAHs:

Polycyclic aromatic hydrocarbons

Pb:

Lead

PCBs:

Polychlorinated biphenyls

PCDD:

Polychlorinated dibenzo-p-dioxins

PCDF:

Polychlorinated dibenzofurans

PCE:

Perchloroethylene

PCP:

Pentachlorophenol

PCPP:

Pharmaceutical and personal care products

PFAS:

Polyfluoroalkyl substances

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctanesulfonic acid

PFOSF:

Perfluorooctanesulfonyl fluoride

PO4 :

Phosphate

POPs:

Persistent organic pollutants

PRB:

Permeable reactive barrier

RDX:

Royal demolition explosive

s:

Second

Sb:

Antimony

Sb2O3 :

Antimony trioxide

Se:

Selenium

SO4 :

Sulphate

Sr:

Strontium

SVE:

Soil vapor extraction

TCA:

Trichloroethane

TCE:

Trichloroethylene

TI:

Thallium

TMB:

Trimethylbenzene

TNT:

Trinitrotoluene

TPH:

Total petroleum hydrocarbons

U:

Uranium

US EPA:

United States Environmental Protection Agency

UV:

Ultra-violet

V:

Volt

VC:

Vinyl chloride

VOC:

Volatile organic compounds

W:

Watts

WHO:

World Health Organization

Zn:

Zinc

ZVI:

Zero-valent iron

μg:

Microgram

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotechnol 157:329–345

    Article  CAS  Google Scholar 

  • Abdel-Moghny T, Mohamed RS, El-Sayed E, Aly SM, Snousy MG (2012) Removing of hydrocarbon contaminated soil via air flushing enhanced by surfactant. Appl Pet Res 2:51–59

    Article  CAS  Google Scholar 

  • Abhilash P, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  Google Scholar 

  • Abramovitch RA, Capracotta M (2003) Remediation of waters contaminated with pentachlorophenol. Chemosphere 50:955–957

    Article  CAS  Google Scholar 

  • Abriola LM, Pinder GF (1985) A multi-phase approach to the modelling of porous media contamination by organic compounds: 1. Equation development. Water Resour Res 21:11–18

    Article  CAS  Google Scholar 

  • Acar YB, Alshawabkeh AN (1993) Principle of electrokinetic remediation. J Environ Sci Technol 27:2638–2647

    Article  CAS  Google Scholar 

  • Adams JA, Ready KR (2003) Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monit Remed 23:85–94

    Article  CAS  Google Scholar 

  • Aelterman P, Versichele M, Genettello E, Verbeken K, Verstraete W (2009) Microbial fuel cells operated with iron chelated air cathodes. Electrochim Acta 54:5754–5760

    Article  CAS  Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Tayefeh FH (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11:14036–14043

    CAS  Google Scholar 

  • Ahmady‐Asbchin S, Andres Y, Gerente C, Cloirec PL (2009) Natural seaweed waste as sorbent for heavy metal removal from solution. Environ Technol 30:755–762

    Article  CAS  Google Scholar 

  • Aivalioti MV, Gidarakos EL (2008) In-well air sparging efficiency in remediating the aquifer of a petroleum refinery site. J Environ Eng Sci 7:71–82

    Article  CAS  Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metal resistance. Sci Total Environ 407:3024–3032

    Article  CAS  Google Scholar 

  • Al-Qurainy F, Abdel-Megeed A (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6:987–998

    CAS  Google Scholar 

  • Alshawabkeh AN, Bricka RM, Gent DB (2005) Pilot-scale electrokinetic cleanup of lead-contaminated soils. J Geotech Geoenviron Eng 131:283–291

    Article  CAS  Google Scholar 

  • Alter SR, Brusseau ML, Piatt JJ, Ray-M A, Wang JM, Cain RB (2003) Use of tracer tests to evaluate the impact of enhanced-solubilization flushing on in-situ biodegradation. J Contam Hydrol 64(3–4):191–202

    Article  CAS  Google Scholar 

  • Amaladhas TP, Sivagami S, Devi TA, Ananthi N, Velammal SP (2012) Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia. Adv Nat Sci Nanosci Nanotechnol 3:045006

    Article  CAS  Google Scholar 

  • Amy F, Mark J, Matt M (2010) In-situ thermal treatment technologies. In: Proceedings of the 7th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, 24–27 May 2010

    Google Scholar 

  • Anderson EI, Mesa E (2006) The effects of vertical barrier walls on the hydraulic control of contaminated groundwater. Adv Water Resour 29:89–98

    Article  Google Scholar 

  • Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. J Chem 7:1334–1339

    CAS  Google Scholar 

  • Appleton T, Colder R, Kingman S, Lowndes IS, Read A (2005) Microwave technology for energy-efficient processing of waste. Appl Energy 81:85–113

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao JR, Nair BU (2004) Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J Chem Technol Biotechnol 79:1251–1258

    Article  CAS  Google Scholar 

  • Arshad M, Zafar MN, Younis S, Nadeem R (2008) The use of neem biomass for the biosorption of zinc from aqueous solution. J Hazard Mater 157:534–540

    Article  CAS  Google Scholar 

  • Asta MP, Ayora C, Roman-Ross G, Cama J, Acero P, Gault AG, Charnock JM, Bardelli F (2010) Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem Geol 271:1–12

    Article  CAS  Google Scholar 

  • Atagana HI (2006) Biodegradation of polycyclic aromatic hydrocarbons in contaminated soil by biostimulation and bioaugmentation in the presence of copper (II) ions. World J Microbiol Biotechnol 22:1145–1153

    Article  CAS  Google Scholar 

  • Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103:85–91

    Article  CAS  Google Scholar 

  • Baek KH, Yoon BD, Kim BH, Cho DH, Lee IS, Oh HM, Kim HS (2007) Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. J Microbiol Biotechnol 17:67–73

    CAS  Google Scholar 

  • Baker RS, Heron G (2004) In-situ delivery of heat by thermal conduction and steam injection for improved DNAPL remediation. In: Gavaskar AR, Chen ASC (eds) Remediation of chlorinated and recalcitrant compounds. Battelle, Columbus, OH

    Google Scholar 

  • Banuelos G, Terry N, LeDuc DL, Pilon-Smits EA, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–334

    Google Scholar 

  • Barnes D, Cosden E, Johnson B, Johnson K, Stjarnstrom S, Johansson K, Filler D (2002) Operation of soil vapor extraction in cold climates. In: Proceedings of the 11th International Conference on Cold Regions Engineering, Anchorage, Alaska, 20–22 May 2002, pp. 956–967

    Google Scholar 

  • Barnette M, Das D, Clark J, Ziervogel H, Hayden K (2005) Bioventing at a heating oil spill site in Yellowknife, Northwest Territories. In: Conference Proceedings on Assessment and Remediation of Contaminated Sites in Arctic and Cold Climates, Edmonton, Alberta, 8–10 May 2005, pp. 207–216

    Google Scholar 

  • Baruwati B, Varma RS (2009) High value products from waste: Grape pomace extract: a three‐in‐one package for the synthesis of metal nanoparticles. Chem Sus Chem 2:1041–1044

    Article  CAS  Google Scholar 

  • Baselt RC, Cravey RH (2008) Disposition of toxic drugs and chemicals in man, 8th edn. Biomedical Publications, Foster City, CA, pp 22–25

    Google Scholar 

  • Bayer P, Finkel M, Teutsch G (2004) Combining pump-and-treat and physical barriers for contaminant plume control. Ground Water 42:856–867

    Article  CAS  Google Scholar 

  • Research BCC (2011) Active electronic components: technologies and global markets. BCC Research LLC, Wellesley, MA

    Google Scholar 

  • Belotte D, Curien JB, Maclean RC, Bell G (2003) An experimental test of local adaptation in soil bacteria. Evolution 57:27–36

    Article  Google Scholar 

  • Benner ML, Mohtar RH, Lee LS (2002) Factors affecting air sparging remediation systems using field data and numerical simulations. J Hazard Mater 95:305–329

    Article  CAS  Google Scholar 

  • Benner S, Blowes D, Molson J (2001) Modelling preferential flow in reactive barriers: Implications for performance and design. Ground Water 39:371–379

    Article  CAS  Google Scholar 

  • Benner SG (2000) The hydrogeology, geochemistry and microbiology of a permeable reactive barrier for acid mine drainage. In: PhD thesis, University of Waterloo, Waterloo, ON, Canada

    Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, Toro L, Veglio F (2003) Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy 70:101–112

    Article  CAS  Google Scholar 

  • Beyke G (2000) Enhanced removal of separate phase viscous fuel by electrical resistance heating and multi-phase extraction. In: The second international conference on remediation of chlorinated and recalcitrant compounds, Monterey, CA, 22–25 May 2000, p. 191

    Google Scholar 

  • Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJ (2009a) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343

    Article  CAS  Google Scholar 

  • Bezbaruah AN, Shanbhogue SS, Simsek S, Khan E (2011) Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res 13:6673–6681

    Article  CAS  Google Scholar 

  • Bezbaruah AN, Thompson JM, Chisholm BJ (2009b) Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J Environ Sci Health B 44:518–524

    Article  CAS  Google Scholar 

  • Bhandari A, Surampalli RY, Champagne P, Ong SK, Tyagi RD, Lo IM (2007) Remediation technologies for soils and groundwater. ASCE Publications, Reston, VA, pp 70–73

    Book  Google Scholar 

  • Bhattacharyya KG, Sharma A (2004) Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions. J Environ Manage 71:217–229

    Article  Google Scholar 

  • Bhowmik A, Asahino A, Shiraki T, Nakamura K, Takamizawa K (2009) In situ study of tetrachloroethylene bioremediation with different microbial community shifting. Environ Technol 30:1607–1614

    Article  CAS  Google Scholar 

  • Bierschenk JM, Baker RS, Bukowski RJ, Parker K, Young R, King J, Landler T, Sheppard D (2004) Full-scale phase 1a results of ISTD remediation at former Alhambra, California wood treatment site. In: Proceedings of the 4th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 24–27 May 2004

    Google Scholar 

  • Bittsanszky A, Komives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc (2+) stress. Environ Int 31:251–254

    Article  CAS  Google Scholar 

  • Blacksmith Institute (2011) The world worst toxic pollution problems. Blacksmith Institute, Riverside Drive, NY

    Google Scholar 

  • Blanford WJ, Barackman M, Boing T, Klingel E, Johnson G, Brusseau M (2001) Cyclodextrin-enhanced vertical flushing of a trichloroethene contaminated aquifer. Winter GWMR 21:58–66

    CAS  Google Scholar 

  • Bo L, Quan X, Chen S, Zhao H, Zaho Y (2006) Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Res 40:3061–3068

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  • Bondarenko O, Rolova T, Kahru A, Ivask A (2008) Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors 8:6899–6923

    Article  CAS  Google Scholar 

  • Bonilla A, Cuesta P, Zubiaga R, Saenz de Baranda M, Iglesias J (2000) Electrokinetic remediation of contaminated soils using acid and alkaline media: laboratory experiments with synthetic soils. Land Contam Reclam 8:33–39

    Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Article  CAS  Google Scholar 

  • Bopp CJ IV, Lundstrom CC, Johnson TM, Sanford RA, Long PE, Williams KH (2010) Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, USA. Environ Sci Technol 44:5927–5933

    Article  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    Article  CAS  Google Scholar 

  • Boudouch O, Ying Y, Benadda B (2009) The influence of surface covers on the performance of a soil vapor extraction system. Clean Soil Air Water 37:621–628

    Article  CAS  Google Scholar 

  • Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2:919–927

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Surampalli R, Misra K, Tyagi R, Meunier N, Blais J (2006) Bioremediation of hazardous wastes: a review. Prac Period Hazard Toxic Radioact Waste Manag 10:59–72

    Article  CAS  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489

    Article  CAS  Google Scholar 

  • Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H (2009) Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 11:2216–2227

    Article  CAS  Google Scholar 

  • Brichkova G, Shishlova A, Maneshina T (2007) Tolerance to aluminium in genetically modified tobacco plants. Cytol Genet 4:151–155

    Article  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Brim H, Osborne JP, Kostandarithes HM, Fredrickson JK, Wackett LP, Daly MJ (2006) Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. Microbiology 152:2469–2477

    Article  CAS  Google Scholar 

  • Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Enviro Assess Manage 7:513–541

    Article  CAS  Google Scholar 

  • Cacciatore DA, Millan RR, Clark GM (2003) Low temperature electrical resistive heating at Alameda point in Alameda, California. In: Poster session abstracts of the SERDP/ESTCP partners in environmental technology technical symposium and workshop, Washington, DC, 2–4 December 2003, p. 158

    Google Scholar 

  • Caceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57:643–646

    Article  CAS  Google Scholar 

  • Cameselle C, Gouveia S, Akretche DE, Belhadj B (2013) Advances in electrokinetic remediation for the removal of organic contaminants in soil. In: Rashed MN (ed) Organic pollutants: monitoring, risk and treatment. InTech, Rijeka, pp 210–229

    Google Scholar 

  • Cao J, Elliott D, Zhang WX (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506

    Article  CAS  Google Scholar 

  • Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, Xia Y, Hong Q, Li S (2012) Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol 28:2783–2790

    Article  CAS  Google Scholar 

  • Cao X, Huang X, Liang P, Boon N, Fan M, Zhang L, Zhang X (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:498–501

    Article  CAS  Google Scholar 

  • Carberry JB, Wik J (2001) Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated by petroleum. J Environ Sci Health A 36:1491–1503

    Article  CAS  Google Scholar 

  • Carmen L (2010) US Navy demonstrates thermal conductive heating for DNAPL removal in fractured rock. Technol News Trends 51:1–5

    Google Scholar 

  • Catal T, Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol Let 31:1211–1216

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  Google Scholar 

  • Chavan A, Mukherji S (2008) Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N: P ratio. J Hazard Mater 154:63–72

    Article  CAS  Google Scholar 

  • Chen BY, Chen WM, Chang JS (2007) Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis. J Hazard Mater 139:232–237

    Article  CAS  Google Scholar 

  • Chen L, Chen Y, Chen L, Chen W (2009) Study on fungi-bacteria augmented remediation of petroleum contaminated soil from Northwest of China. Int J Food Agric Environ 7:750–753

    CAS  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  Google Scholar 

  • Cho JS, Digiulio DC, Wilson JT, Vardy JA (1997) In-situ air injection, soil vacuum extraction and enhanced biodegradation: a case study in a JP-4 jet fuel contaminated site. Environ Prog 16:35–42

    Article  CAS  Google Scholar 

  • Choi HM, Lee JY (2011) Groundwater contamination and natural attenuation capacity at a petroleum spilled facility in Korea. J Environ Sci 23:1650–1659

    Article  CAS  Google Scholar 

  • Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. J Environ Manage 91:2238–2247

    Article  CAS  Google Scholar 

  • Cipolla CL, Warpinski NR, Mayerhofer MJ, Lolon EP, Vincent MC (2008) The relationship between fracture complexity, reservoir properties and fracture treatment design. In: Expanded abstracts of the SPE Annual technical Conference and exhibition, Denver, CO, 21–24 September 2008

    Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  • Clauwert P, Aelterman P, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to application. Appl Microbiol Biotechnol 79:901–913

    Article  CAS  Google Scholar 

  • Clement TP, Johnson CD, Sun Y, Klecka GM, Bartlett C (2000) Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site. J Contam Hydrol 42:113–140

    Article  CAS  Google Scholar 

  • Coel-Roback B, Lowery P, Springer M, Thompson L, Huddleston G (2003) Non-traditional in-situ vitrification: a technology demonstration at Los Alamos national laboratory. In: WM’03 Conference, Tucson, AZ, 23–27 February 2003, p. 12

    Google Scholar 

  • Comba S, Di Molfetta A, Sethi RA (2011) A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut 215:595–607

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Conley D, Hansen K, Stegemeier G, Vinegar H, Fossati F, Carl F, Clough H (2000) In-situ thermal desorption of refined petroleum hydrocarbons from saturated soil. In: Wickramanayake GD, Gavaskar AR (eds) Physical and thermal technologies: remediation of chlorinated and recalcitrant compounds. Battelle, Columbus, OH, pp 197–206

    Google Scholar 

  • Cozzarelli IM, Bohlke J, Masoner J, Breit G, Lorah M, Tuttle M, Jaeschke J (2011) Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Ground Water 49:663–687

    Article  CAS  Google Scholar 

  • Crane R, Dickinson M, Popescu I, Scott T (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45:2931–2942

    Article  CAS  Google Scholar 

  • Da Silva EA, Cossich ES, Tavares CRG, Guirardello R (2002) Modeling of copper (II) biosorption by marine alga Sargassum sp. in fixed-bed column. Process Biochem 38:791–799

    Article  Google Scholar 

  • Da Silva ML, Ruiz-Aguilar GM, Alvarez PJ (2005) Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation 16:105–114

    Article  CAS  Google Scholar 

  • Daughton CG (2004) PPCPS in the environment: future research-beginning with the end always in mind. In: Pharmaceuticals in the environment, Springer Verlag, pp. 463–495

    Google Scholar 

  • Davies RJ, Mathias SA, Moss J, Hustof S, Newport L (2012) Hydraulic fractures: How far can they go? Marine Petrol Geol 37:1–6

    Article  Google Scholar 

  • Davis E (1998) Steam injection for soil and aquifer remediation. US EPA Office of Research and Development, Washington, DC

    Google Scholar 

  • Davis E, Akladiss N, Hoey R, Brandon B, Nalipinski M, Carroll S, Heron G, Novakowski K, Udell K (2005) Steam enhanced remediation research for DNAPL in fractured rock, Loring air force base, Limestone, Maine. US EPA Office of Research and Development, Washington, DC

    Google Scholar 

  • Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Heal 214:442–448

    Article  CAS  Google Scholar 

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils increasing microbial richness: missing links. Environ Microbiol 3:649–657

    Article  CAS  Google Scholar 

  • Delille D, Delille B, Pelletier E (2002) Effectiveness of bio-remediation of crude oil contaminated subantarctic inter- tidal sediment: the microbial response. Microb Ecol 44:118–126

    Article  CAS  Google Scholar 

  • Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione JF (2009) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 32:1521–1528

    Article  Google Scholar 

  • Dellisanti F, Rossi PL, Valdre G (2009) Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus. Int J Miner Process 91:61–67

    Article  CAS  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  Google Scholar 

  • Deng L, Zhu X, Wang X, Su Y, Su H (2007) Biosorption of copper (II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation 18:393–402

    Article  CAS  Google Scholar 

  • Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70:377–394

    Article  Google Scholar 

  • Devasahayam M, Masih SA (2012) Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation. Ind J Exp Biol 50:430–438

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Di Palma L, Ferrantelli P, Merli C, Biancifiori F (2003) Recovery of EDTA and metal precipitation from soil flushing solutions. J Hazard Mater 103:153–168

    Article  CAS  Google Scholar 

  • Di Toro S, Zanaroli G, Varese GC, Marchisio VF, Fava F (2008) Role of Enzyveba in the aerobic bioremediation and detoxification of a soil freshly contaminated by two different diesel fuels. Int Biodeter Biodegrad 62:153–161

    Article  CAS  Google Scholar 

  • Diab EA (2008) Phytoremediation of oil contaminated desert soil using the rhizosphere effects. Global J Environ Res 2:66–73

    Google Scholar 

  • Didierjean L, Gondet L, Perkins R, Lau SMC, Schaller H, O’Keefe DP, Werck-Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189

    Article  CAS  Google Scholar 

  • Diplock E, Mardlin D, Killham K, Paton G (2009) Predicting bioremediation of hydrocarbons: laboratory to field scale. Environ Pollut 157:1831–1840

    Article  CAS  Google Scholar 

  • Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S (2011) Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater 192:270–276

    CAS  Google Scholar 

  • Dominguez RC, Leu J, Bettahar M (2012) Sustainable wind-driven bioventing at a petroleum hydrocarbon-impacted site. Remed J 22:65–78

    Article  Google Scholar 

  • Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196:1171–1177

    Article  CAS  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Nat Acad Sci Proc 104:16816–16821

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  Google Scholar 

  • Duke NC, Burns KA, Swannell RPJ, Dalhaus O, Rupp RJ (2000) Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: the Gladstone field trials. Mar Pollut Bull 41:403–412

    Article  CAS  Google Scholar 

  • Dupont RR (1993) Fundamentals of bioventing applied to fuel contaminated sites. Environ Prog 12:45–53

    Article  CAS  Google Scholar 

  • Eguchi M, Kitagawa M, Suzuki Y, Nakamuara M, Kawai T, Okamura K, Sasaki S, Miyake Y (2001) A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Wat Res 35:2145–2152

    Article  CAS  Google Scholar 

  • Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2006) Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis hoffm. J Hazard Mater 137:293–298

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Barlett CL, Lee MD, Harkness MR, DeWeerd KA (2000) Bioaugmentation for accelerated in-situ bioremediation. Environ Sci Technol 34:2254–2260

    Article  CAS  Google Scholar 

  • Erable B, Feron D, Bergel A (2012) Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: A review. Chem Sus Chem 5:975–987

    Article  CAS  Google Scholar 

  • Esmaeili A, Ghasemi S, Rustaiyan A (2008) Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. Afr J Biotechnol 7:2034–2037

    CAS  Google Scholar 

  • Euliss K, Ho CH, Schwab A, Rock S, Banks MK (2008) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour Technol 99:1961–1971

    Article  CAS  Google Scholar 

  • Fassler E, Stauffer W, Gupta SK, Schulin R (2012) Effects and limitations of elemental sulphur applications for enhanced phytoextraction. Int J Phytoremediation 14:681–690

    Article  CAS  Google Scholar 

  • Filali BK, Taoufik J, Zeroual Y, Dzairi F, Talbi M, Blaghen M (2000) Waste water bacterial isolates resistant to heavy metals and antibiotics. Curr Microbiol 41:151–156

    Article  CAS  Google Scholar 

  • Flocco CG, Lindblom SD, Elizabeth A, Smits P (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304

    Article  CAS  Google Scholar 

  • Forman KM, Kito M, Kayaci H, Zimmerle J, Rhoades D, Silver C (2010) Chloroform and TCE reduction using pneumatically injected microscale zero-valent iron (ZVI). In: Proceedings of the 7th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, 24–27 May 2010

    Google Scholar 

  • Fountain JC (1998) Technologies for dense non-aqueous phase liquid source zone remediation. In: Technology evaluation report, Ground water remediation analysis center, Pittsburgh

    Google Scholar 

  • Fraser M, Barker JF, Butler B, Blaine F, Joseph S, Cooke C (2008) Natural attenuation of a plume from an emplaced coal tar creosote source over 14 years. J Contam Hydrol 100:101–115

    Article  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albercht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  Google Scholar 

  • Friesl W, Friedl J, Platzer K, Horak O, Gerzabek M (2006) Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environ Pollut 144:40–50

    Article  CAS  Google Scholar 

  • FRTR (1999) Soil flushing. Federal Remediation Technologies Roundtable, Washington, DC

    Google Scholar 

  • FRTR (2005a) Cost and performance report on electrical resistive heating at Charleston Naval complex, AOC 607, North Charleston, South Carolina. Federal Remediation Technologies Roundtable, Washington, DC

    Google Scholar 

  • FRTR (2005b) Ex situ thermal remediation technology: thermal desorption. Federal Remediation Technologies Roundtable, Technology Innovation Office, Washington, DC

    Google Scholar 

  • FRTR (2006) In situ thermal remediation technologies. Federal Remediation Technologies Roundtable, Technology Innovation Office, Washington, DC

    Google Scholar 

  • Fdf T (2012) Remediation technologies screening matrix and reference guide version 4.0: remediation technology. Federal Remediation Technologies Roundtable, Washington, DC

    Google Scholar 

  • Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2008) A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr Res 343:555–560

    Article  CAS  Google Scholar 

  • Gafar K, Soga K, Bezuijen A, Sanders MPM, Tol AF (2008) Fracturing of sand in compensation grouting. In: Proceedings of 6th international symposium on geotechnical aspects of underground construction in soft ground, Shanghai, China, 10–12 April 2008, pp. 281–286

    Google Scholar 

  • Galazka A, Krol M, Perzynski A (2012) The efficiency of rhizosphere bioremediation with Azospirillum sp. and Pseudomonas stutzeri in soils freshly contaminated with PAHs and diesel fuel. Pol J Environ Stud 21:345–353

    CAS  Google Scholar 

  • Gandhimathi R, Kiran GS, Hema T, Selvin J, Raviji TR, Shanmughapriya S (2009) Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng 32:825–835

    Article  CAS  Google Scholar 

  • Gandia‐Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC (2008) Detoxification of the explosive 2, 4, 6‐trinitrotoluene in Arabidopsis: discovery of bifunctional O‐and C‐glucosyltransferases. Plant J 56:963–974

    Article  CAS  Google Scholar 

  • Garcia-Blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR (2007) Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 18:1–15

    Article  CAS  Google Scholar 

  • Gavaskar A, Tatar L, Condit W (2005) Cost and performance report nanoscale zero-valent iron technologies for source remediation. Naval Facilities Engineering Command, Port Hueneme, CA

    Google Scholar 

  • Gelman F, Binstock R (2008) Natural attenuation of MTBE and BTEX compounds in a petroleum contaminated shallow coastal aquifer. Environ Chem Lett 6:259–262

    Article  CAS  Google Scholar 

  • Gentry T, Rensing C, Pepper I (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Env Sci Tech 34:447–494

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Ghauch A, Tuqan A, Assi HA (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635

    Article  CAS  Google Scholar 

  • Gidarakos E, Aivalioti M (2007) Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149:574–581

    Article  CAS  Google Scholar 

  • Gilbert O, de Pablo J, Luis Cortina J, Ayora C (2003) Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J Chem Technol Biot 78:489–496

    Article  CAS  Google Scholar 

  • GLIMUN (2009) Access to safe drinking water. Great Lakes invitational Conference association, Great Lakes region, Michigan

    Google Scholar 

  • Gojgic-Cvijovic G, Milic J, Solevic T, Beskoski V, Ilic M, Djokic L, Narancic T, Vrvic M (2012) Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation 23:1–14

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87:1077–1090

    Article  CAS  Google Scholar 

  • Gomez J, Alcantara M, Pazos M, Sanroman M (2010) Remediation of polluted soil by a two-stage treatment system: desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent. J Hazard Mater 173:794–798

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez M, Carrillo-Gonzalez R, Gutierrez-Castorena M (2009) Natural attenuation in a slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. J Hazard Mater 161:1288–1298

    Article  CAS  Google Scholar 

  • Gordon MJ (1998) Case history of a large scale air sparging/soil vapor extraction system for remediation of chlorinated volatile organic compounds in ground water. Ground water Monit Remed 18:137–149

    Article  CAS  Google Scholar 

  • Gosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Asian J Energy Environ 6:1–18

    Google Scholar 

  • Green C, Hoffnagle A (2004) Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. Office of Superfund Remediation and Technology Innovation, Washington, DC

    Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing γ‐glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  CAS  Google Scholar 

  • Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198–3208

    Article  CAS  Google Scholar 

  • Haddad F, Maffia LA, Mizubuti ES, Teixeira H (2009) Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil. Biol Control 49:114–119

    Article  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants: the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935

    Article  CAS  Google Scholar 

  • Han DH, Cha SY, Yang HY (2004) Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Res 38:2782–2790

    Article  CAS  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  CAS  Google Scholar 

  • Harbottle MJ, Lear G, Sills GC, Thompson IP (2009) Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics. J Environ Manage 90:1893–1900

    Article  CAS  Google Scholar 

  • Harjanto S, Kasai E, Terui T, Nakamura T (2002) Behavior of dioxin during thermal remediation in the zone combustion process. Chemosphere 47:687–693

    Article  CAS  Google Scholar 

  • Hassanizadeh M, Gray WG (1979) General conservation equations for multi-phase systems: 1. Averaging procedure. Adv Water Resour 2:131–144

    Article  Google Scholar 

  • Hazra C, Kundu D, Chaudhari A (2012) Biosurfactant assisted bioaugmentation in bioremediation. In: Microorganisms in environmental management, Springer Verlag, pp. 631–664

    Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  CAS  Google Scholar 

  • He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370

    Article  CAS  Google Scholar 

  • He R, You X, Shao J, Gao F, Pan B, Cui D (2007) Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 18:315601

    Article  CAS  Google Scholar 

  • Hejazi RF (2002) Oily sludge degradation study under arid conditions using a combination of landfarm and bioreactor technologies. In: PhD thesis, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St John’s, Canada

    Google Scholar 

  • Henn KW, Waddill DW (2006) Utilization of nanoscale zerovalent iron for source remediation: a case study. Remed J 16:57–77

    Article  Google Scholar 

  • Hennebel T, Verhagen P, Simoen H, Gusseme BD, Vlaeminck SE, Boon N, Verstraete W (2009) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76:1221–1225

    Article  CAS  Google Scholar 

  • Heron G (2008) Use of thermal conduction heating for the remediation of DNAPL in fractured bedrock. In: Proceedings of the 6th International Conference in Remediation of Chlorinated and Recalcitrant Compounds, Colombus, OH, 19–22 May 2008

    Google Scholar 

  • Heron G, Carroll S, Nielsen SG (2005) Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating. Ground Water Monit Remed 25:92–107

    Article  CAS  Google Scholar 

  • Hesselsoe M, Bjerring ML, Henriksen K, Loll P, Nielsen JL (2008) Method for measuring substrate preferences by individual members of microbial consortia proposed for bioaugmentation. Biodegradation 19:621–633

    Article  Google Scholar 

  • Hirschorn SK, Grostern A, Lacrampe-Couloume G, Edwards EA, MacKinnon L, Repta C, Major DW, Sherwood Lollar B (2007) Quantification of biotransformation of chlorinated hydrocarbons in a biostimulation study: added value via stable carbon isotope analysis. J Contam Hydrol 94:249–260

    Article  CAS  Google Scholar 

  • Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro AM, Sivavec TM, Salvo J (1999) The Lasagna technology for in situ soil remediation. 2. Large field test. Environ Sci Technol 33:1092–1099

    Article  CAS  Google Scholar 

  • Ho SV, Sheridan PW, Athmer CJ, Heitkamp MA, Brackin JM, Weber D, Brodsky PH (1995) Integrated in situ soil remediation technology: the Lasagna process. Environ Sci Technol 29:2528–2534

    Article  CAS  Google Scholar 

  • Hodges RA, Falta RW (2008) Vertical confinement of injected steam in the vadose zone using cold air injection. Vadose Zone J 7:732–740

    Article  Google Scholar 

  • Hoier CK, Sonnenborg TO, Jensen KH, Kortegaard C, Nasser M (2007) Experimental investigation of pneumatic soil vapor extraction. J Contam Hydrol 89:29–47

    Article  CAS  Google Scholar 

  • Hong MS, Farmayan WF, Dortch IJ, Chiang CY, McMillan SK, Schnoor JL (2001) Phytoremediation of MTBE from a groundwater plume. Environ Sci Technol 35:1231–1239

    Article  CAS  Google Scholar 

  • Hong Q, Zhang Z, Hong Y, Li S (2007) A microcosm study on bioremediation of febitrothion contaminated soil using Burkholderia sp. FDS-1. Int Biodeter Biodegrad 59:55–61

    Article  CAS  Google Scholar 

  • Hood E, Major D, Quinn J, Yoon WS, Gavaskar A, Edwards E (2008) Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station. Ground Water Monit Remed 28:98–107

    Article  CAS  Google Scholar 

  • Horel A, Schiewer S (2009) Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Reg Sci Technol 58:113–119

    Article  Google Scholar 

  • Horikoshi S, Hidaka H, Serpone N (2002) Environmental remediation by an integrated microwave/UV-illumination method. 1: microwave-assisted degradation of Rhodamine-B dye in aqueous TiO2 dispersions. Environ Sci Technol 36:1357–1366

    Article  CAS  Google Scholar 

  • Hormann B, Muller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509 T. Eur J Lipid Sci Technol 112:674–680

    Article  CAS  Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    Article  CAS  Google Scholar 

  • Hu J, Nakamura J, Richardson SD, Aitken MD (2012) Evaluating the effects of bioremediation on genotoxicity of polycyclic aromatic hydrocarbon-contaminated soil using genetically engineered, higher eukaryotic cell lines. Environ Sci Technol 46:4607–4613

    Article  CAS  Google Scholar 

  • Huang D, Xu Q, Cheng J, Lu X, Zhang H (2012) Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils. Int J Electrochem Sci 7:4528–4544

    CAS  Google Scholar 

  • Huang L, Chen J, Quan X, Yang F (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 33:937–945

    Article  CAS  Google Scholar 

  • Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    Article  CAS  Google Scholar 

  • Hultgren J, Pizzul L, Castillo MP, Granhall U (2009) Degradation of PAH in a creosote contaminated soil. A comparison between the effects of willows (Salix viminalis), wheat straw and a nonionic surfactant. Int J Phytoremediation 12:54–66

    Article  CAS  Google Scholar 

  • Huon G, Simpson T, Holzer F, Maini G, Will F, Kopinke FD, Roland U (2012) In situ radio-frequency heating for soil remediation at a former service station: case study and general aspects. Chem Eng Technol 35:1534–1544

    Article  CAS  Google Scholar 

  • Hvidberg B (2007) Remediation technologies for a large pesticide-contaminated site: enclosure, alkaline hydrolysis and bioventing. Danish Environmental Protection Agency, Denmark

    Google Scholar 

  • Industry Experts (2011) Flame retardant chemicals: a global market overview. MarketResearch.com, Rockville, USA

    Google Scholar 

  • Inyang HI, de Brito Galvao T (2004) The application of innovative materials in waste containment barriers. J Environ Eng 130:834–835

    Article  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    Article  CAS  Google Scholar 

  • Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  Google Scholar 

  • Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli DP, Chauhan UK (2011) Bioremediation of petroleum oil contaminated soil and water. Res J Environ Toxicol 5(1):1–26

    Article  CAS  Google Scholar 

  • James BR (2001) Remediation-by-reduction strategies for chromate-contaminated soils. Environ Geochem Health 23:175–179

    Article  CAS  Google Scholar 

  • Janbandhu A, Fulekar M (2011) Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J Hazard Mater 187:333–340

    Article  CAS  Google Scholar 

  • Jang JK, Chang IS, Moon H, Kang KH, Kim BH (2006) Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotechnol Bioeng 95:772–774

    Article  CAS  Google Scholar 

  • Jang W, Aral MM (2009) Multiphase flow fields in in-situ air sparging and its effect on remediation. Transport Porous Med 76:99–119

    Article  CAS  Google Scholar 

  • Jawitz JW, Annable MD, Rao P, Rhue RD (1998) Field implementation of a winsor type I surfactant/alcohol mixture for in situ solubilization of a complex LNAPL as a single-phase microemulsion. Environ Sci Technol 32:523–530

    Article  CAS  Google Scholar 

  • Jawitz JW, Sillan RK, Annable MD, Rao PSC, Warner K (2000) In-situ alcohol flushing of a DNAPL source zone at a dry cleaner site. Environ Sci Technol 34:3722–3729

    Article  CAS  Google Scholar 

  • Jennifer L (2008) Pulsed biosparging of the E10 gasoline source in the borden aquifer. In: Master’s thesis, University of Waterloo

    Google Scholar 

  • Jeremiasse AW, Hamelers HV, Buisman CJ (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochem 78:39–43

    Article  CAS  Google Scholar 

  • Jiemvarangkul P, Zhang WX, Lien HL (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170:482–491

    Article  CAS  Google Scholar 

  • Jimenez N, Vinas M, Sabate J, Diez S, Bayona JM, Solanas AM, Albaiges J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Johnson AC, Jurgens MD, Williams RJ, Kummerer K, Kortenkamp A, Sumpter JP (2008) Do cytotoxic chemotheraphy drugs discharged into rivers pose a risk to the environment and human health? an overview and UK case study. J Hydrol 348:167–175

    Article  CAS  Google Scholar 

  • Johnson SJ, Woolhouse K, Prommer H, Barry D, Christofi N (2003) Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Eng Geol 70:343–349

    Article  Google Scholar 

  • Jones D, Lelyveld T, Mavrofidis S, Kingman SW, Miles N (2002) Microwave heating applications in environmental engineering: a review. Resour Conserv Recy 34:75–90

    Article  Google Scholar 

  • Jones KC, De Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221

    Article  CAS  Google Scholar 

  • Juhanson J, Truu J, Heinaru E, Heinaru A (2009) Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol Ecol 70:446–455

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo(a)pyrene. Int Biodeter Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Juhasz AL, Smith E, Smith J, Naidu R (2003) In situ remediation of DDT-contaminated soil using a two-phase co-solvent flushing-fungal biosorption process. Water Air Soil Pollut 147:263–274

    Article  CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Kadu BS, Sathe YD, Ingle AB, Chikate RC, Patil KR, Rode CV (2011) Efficiency and recycling capability of montmorillonite supported Fe-Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl Catal B 104:407–414

    Article  CAS  Google Scholar 

  • Kantar C, Honeyman BD (2012) Citric acid enhanced remediation of soils contaminated with uranium by soil flushing and soil washing. J Environ Eng 132:247–255

    Article  CAS  Google Scholar 

  • Kao C, Chen C, Chen S, Chien H, Chen Y (2008) Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70:1492–1499

    Article  CAS  Google Scholar 

  • Kao C, Chen S, Liu J, Wu M (2001) Evaluation of TCDD biodegradability under different redox conditions. Chemosphere 44:1447–1454

    Article  CAS  Google Scholar 

  • Kao C, Wang Y (2001) Field investigation of the natural attenuation and intrinsic biodegradation rates at an underground storage tank site. Environ Geol 40:622–631

    Article  CAS  Google Scholar 

  • Karagunduz A, Gezer A, Karasuloglu G (2007) Surfactant enhanced electrokinetic remediation of DDT from soils. Sci Total Environ 385:1–11

    Article  CAS  Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  Google Scholar 

  • Kasai E, Harjanto S, Terui T, Nakamura T, Waseda Y (2000) Thermal remediation of PCDD/Fs contaminated soil by zone combustion process. Chemosphere 41:857–864

    Article  CAS  Google Scholar 

  • Kauppi S, Sinkkonen A, Romantschuk M (2011) Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: comparison of biostimulation and bioaugmentation. Int Biodeter Biodegrad 65:359–368

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2008) Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. J Mol Microbiol Biotechnol 15:212–219

    Article  CAS  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix H, Gupta S, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  CAS  Google Scholar 

  • Khaitan S, Kalainesan S, Erickson L, Kulakow P, Martin S, Karthikeyan R, Hutchinson S, Davis L, Illangasekare T, Ng’oma C (2006) Remediation of sites contaminated by oil refinery operations. Environ Prog 25:20–31

    Article  CAS  Google Scholar 

  • Khan FI, Husain T (2002) Clean up contaminated sites. American Institute of Chemical Engineers, US

    Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    Article  Google Scholar 

  • Kim H, Annable MD, Rao PSC, Cho J (2009) Laboratory evaluation of surfactant enhanced air sparging for perchloroethene source mass depletion from sand. J Environ Sci Health A 44(4):406–413

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefaciens. Enzyme Microb Tech 30:145–152

    Article  CAS  Google Scholar 

  • Kim SH, Han HY, Lee YJ, Kim CW, Yang JW (2010) Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. Sci Total Environ 408:3162–3168

    Article  CAS  Google Scholar 

  • Kim SH, Lee HS, Song WY, Choi KS, Hur Y (2007) Chloroplast-targeted BrMT1 (Brassica rapa type-1 metallothionein) enhances resistance to cadmium and ROS in transgenicatabidopsis plants. J Plant Biol 50:1–7

    Article  Google Scholar 

  • Kim GN, Jung YH, Lee JJ, Moon JK, Jung CH (2008) Development of electrokinetic-flushing technology for the remediation of contaminated soil around nuclear facilities. J Ind Eng Chem 14:732–738

    Article  CAS  Google Scholar 

  • Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13:617–627

    Article  CAS  Google Scholar 

  • King P, Rakesh N, Lahari SB, Kumar YP, Prasad V (2008) Biosorption of zinc onto Syzygium cumini L: equilibrium and kinetic studies. Chem Eng J 144:181–187

    Article  CAS  Google Scholar 

  • Kiran GS, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148:221–225

    Article  CAS  Google Scholar 

  • Kirkwood A, Nalewajko C, Fulthorpe R (2006) The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants. Microb Ecol 51:4–12

    Article  CAS  Google Scholar 

  • Kirtland BC, Aelion CM (2000) Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation. J Contam Hydrol 41:367–383

    Article  CAS  Google Scholar 

  • Klan P, Vavrik M (2006) Non-catalytic remediation of aqueous solutions by microwave-assisted photolysis in the presence of H2O2. J Photochem Photobiol A 177:24–33

    Article  CAS  Google Scholar 

  • Klinger J, Stieler C, Sacher F, Brauch HJ (2002) MTBE (methyl tertiary-butyl ether) in groundwaters: monitoring results from Germany. J Environ Monitor 4:276–279

    Article  CAS  Google Scholar 

  • Kluger M, Beykle GL (2010) Electrical resistance heating of volatile organic compounds in sedimentary rock. Remed J 20:69–82

    Article  Google Scholar 

  • Komarek M, Tlustos P, Szakova J, Chrastny V (2008) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Eniron Pollut 151:27–38

    Article  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  Google Scholar 

  • Kram ML (1993) Free product recovery: mobility limitations and improved approaches. NFESC information bulletin no IB-123

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Kumar MA, Kumar VV, Premkumar MP, Baskaralingam P, Thiruvengadaravi KV, Sivanesan S (2012) Chemometric formulation of bacterial consortium-AVS for improved decolorization of resonance-stabilized and heteropolyaromatic dyes. Bioresour Technol 123:344–351

    Article  CAS  Google Scholar 

  • Kumar U, Bandyopadhyay (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97:104–109

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments: a review. Waste Manage 28:215–225

    Article  CAS  Google Scholar 

  • Kurumata M, Takahashi M, Sakamotoa A, Ramos JL, Nepovim A, Vanek T, Hirata T, Morikawa H (2005) Tolerance to, and uptake and degradation of 2, 4, 6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch 60:272–278

    CAS  Google Scholar 

  • Lai YL, Annadurai G, Huang FC, Lee JF (2008) Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresour Technol 99:6480–6487

    Article  CAS  Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  CAS  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, Neuhierl B (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  Google Scholar 

  • Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501–1510

    Article  CAS  Google Scholar 

  • Lee JY, Lee CH, Lee KK, Choi SI (2001) Evaluation of soil vapor extraction and bioventing for a petroleum-contaminated shallow aquifer in Korea. Soil Sediment Contam 10:439–458

    Article  CAS  Google Scholar 

  • Lee M, Kang H, Do W (2005) Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site. Water Res 39:139–146

    Article  CAS  Google Scholar 

  • Lefebvre LP, Banhart J, Dunand D (2008) Porous metals and metallic foams: current status and recent developments. Adv Eng Mater 10:775–787

    Article  CAS  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  CAS  Google Scholar 

  • Lendvay J, Löffler FE, Dollhopf M, Aiello M, Daniels G, Fathepure B, Gebhard M, Heine R, Helton R, Shi J (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431

    Article  CAS  Google Scholar 

  • Lestan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13

    Article  CAS  Google Scholar 

  • Li D, Teoh WY, Selomulya C, Woodward RC, Amal R, Rosche B (2006) Flame-sprayed superparamagnetic bare and silica-coated maghemite nanoparticles: synthesis, characterization, and protein adsorption-desorption. Chem Mater 18:6403–6413

    Article  CAS  Google Scholar 

  • Li T, Yuan S, Wan J, Lin L, Long H, Wu X, Lu X (2009a) Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl β-cyclodextrin. Chemosphere 76:1226–1232

    Article  CAS  Google Scholar 

  • Li X, Lin X, Li P, Liu W, Wang L, Ma F, Chukwuka KS (2009b) Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J Hazard Mater 172:601–605

    Article  CAS  Google Scholar 

  • Li X, Shen X, Zhong L, Zhao L, Ding Y (2010) In foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. In: Abstracts of the AGU fall meeting, California, USA, 13–17 December 2010, p. 1063

    Google Scholar 

  • Li Z, Yu JW, Neretnieks I (1998) Electroremediation: removal of heavy metals from soils by using cation-selective membranes. Environ Sci Technol 32:394–497

    Article  CAS  Google Scholar 

  • Liang C, Chen YJ (2010) Evaluation of activated carbon for remediating benzene contamination: adsorption and oxidative regeneration. J Hazard Mater 182:544–551

    Article  CAS  Google Scholar 

  • Liang P, Huang X, Fan MZ, Cao XX, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77:551–558

    Article  CAS  Google Scholar 

  • Lin Y, Cui X, Yen C, Wai CM (2005) Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J Phys Chem B 109:14410–14415

    Article  CAS  Google Scholar 

  • Lisha K, Pradeep T (2009) Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull 42:144–152

    Article  CAS  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550

    Article  CAS  Google Scholar 

  • Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32:23–29

    Article  CAS  Google Scholar 

  • Liu X, Yu G (2006) Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil. Chemosphere 63:228–235

    Article  CAS  Google Scholar 

  • Liu Y, Yang S, Hong J, Sun C (2007) Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon. J Hazard Mater 142:208–215

    Article  CAS  Google Scholar 

  • Loffler FE, Edwards EA (2006) Harnessing microbial activities for environmental cleanup. Curr Opin Biotech 17:274–284

    Article  CAS  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Logsdon S, Keller K, Moorman T (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695

    Article  CAS  Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae. Colloid Surf A 242:93–104

    Article  CAS  Google Scholar 

  • Lu S, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresour Technol 99:1509–1517

    Article  CAS  Google Scholar 

  • Ludlow A, Roux P (2012) Innovative technologies for sustainable environmental remediation in poor and middle income countries. J Health Pollut 3:1–4

    Article  Google Scholar 

  • Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264

    Article  CAS  Google Scholar 

  • Luo Q, Wang H, Zhang Z, Fan X, Qian Y (2006) In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode. Chemosphere 64:415–422

    Article  CAS  Google Scholar 

  • Luo Y, Zhang R, Liu G, Li J, Qin B, Li M, Chen S (2011) Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour Technol 102:3827–3832

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennely ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Ma TT, Teng Y, Luo YM, Christie P (2012) Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. Int J Phytoremediation 15:154–167

    Article  CAS  Google Scholar 

  • Mace C, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, Kvapil P, Venkatakrishnan R, Zhang WX (2006) Nanotechnology and groundwater remediation: a step forward in technology understanding. Remed J 16:23–33

    Article  Google Scholar 

  • Macias F, Caraballo MA, Nieto JM, Rotting TS, Ayora C (2012) Natural pretreatment and passive remediation of highly polluted acid mine drainage. J Environ Manage 104:93–100

    Article  CAS  Google Scholar 

  • Maes A, Van Raemdonck H, Smith K, Ossieur W, Lebbe L, Verstraete W (2006) Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater. Environ Sci Technol 40:5544–5552

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytoremediation 13:264–279

    Article  Google Scholar 

  • Magalhaes S, Ferreira Jorge R, Castro P (2009) Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes: a transition regime between bioventing and soil vapour extraction. J Hazard Mater 170:711–715

    Article  CAS  Google Scholar 

  • Maiti PK, Maiti P (2011) Biodiversity: perception, peril and preservation. PHI Learning Pvt. Ltd., New Delhi, pp 435–440

    Google Scholar 

  • Malina G, Zawierucha I (2007) Potential of bioaugmentation and biostimulation for enhancing intrinsic biodegradation in oil hydrocarbon-contaminated soil. Bioremed J 11:141–147

    Article  CAS  Google Scholar 

  • Malkoc E (2006) Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. J Hazard Mater 137:899–908

    Article  CAS  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42:1766–1772

    Article  CAS  Google Scholar 

  • Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeter Biodegrad 70:141–147

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel oil contaminated soil in Alpine Glacier Skiing area. Appl Environ Microbiol 67:3127–3133

    Article  CAS  Google Scholar 

  • Maynard JB (2005) Improving the performance of constructed wetlands for treatment of acid mine drainage: a pilot-scale study of the use of dolostone instead of lomestone for anoxic drains. Final report on SMART grant from Indiana division of reclamation. University of Cincinnati, Cincinnati, OH

    Google Scholar 

  • McDonald TA (2005) Polybrominated diphenylether levels among United States residents: Daily intake and risk of harm to the developing brain and reproductive organs. Integrat Environ Assess Manag 1:343–354

    Article  CAS  Google Scholar 

  • McGee BC (2003) Electro-thermal dynamic stripping process for in situ remediation under an occupied apartment building. Remed J 13:67–79

    Article  Google Scholar 

  • McGrath S, Lombi E, Gray C, Caille N, Dunham S, Zhao F (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack F (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Megharaj M, Singleton I, McClure N, Naidu R (2000) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch Environ Contam Toxicol 38:439–445

    Article  CAS  Google Scholar 

  • Meharg AA (2001) The potential for utilizing mycorrhizal associations in soils bioremediation. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, UK, pp 445–455

    Chapter  Google Scholar 

  • Melo J, D’Souza S (2004) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 92:151–155

    Article  CAS  Google Scholar 

  • Memarian R, Ramamurthy AS (2012) Effects of surfactants on rhizodegradation of oil in a contaminated soil. J Environ Sci Health A 47:1486–1490

    Article  CAS  Google Scholar 

  • Mena-Benitez GL, Gandia-Herrero F, Graham S, Larson TR, McQueen-Mason SJ, French CE, Rylott EL, Bruce NC (2008) Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane. Plant Physiol 147:1192–1198

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguebel JP, Gawronski W, Schroder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST action 859. J Soil Sediment 10:1039–1070

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguebel JP, Schroder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Mench M, Vangronsveld J, Lepp N, Ruttens A, Bleeker P, Geebelen W (2007) Use of soil amendments to attenuate trace element exposure: sustainability, side effects, and failures. In: Hamon R, McLaughlin M, Lombi E (eds) Natural attenuation of trace element availability in soils. SETAC Press, Pensacola, pp 197–228

    Google Scholar 

  • Mendelssohn IA, Lin Q, Debusschere K, Penland S, Henry Jr CB, Overton EB, Portier RJ, Walsh MM, Rabalais NN (1995) Development of bioremediation for oil spill cleanup in coastal wetlands: Products impacts and bioremediation potential. In: Proceedings of the International Oil Spill Conference, Febrauary 1995, pp. 97–100

    Google Scholar 

  • Menendez-Vega D, Gallego JLR, Pelaez AI, Fernandez de Cordoba G, Moreno J, Munoz D, Sanchez J (2007) Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. Eur J Soil Biol 43:310–321

    Article  CAS  Google Scholar 

  • Miller RR (1996) Artificially induced or blast-enhanced fracturing: technology overview report. Ground-water Remediation Technologies Analysis Center, Pittsburgh, PA

    Google Scholar 

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl‐chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505

    Article  CAS  Google Scholar 

  • Mohan SV, Chandrasekhar K (2011) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 102:9532–9541

    Article  CAS  Google Scholar 

  • Moller J, Winther P, Lund B, Kirkebjerg K, Westermann P (1996) Bioventing of diesel oil-contaminated soil: comparison of degradation rates in soil based on actual oil concentration and on respirometric data. J Ind Microbiol 16:110–116

    Article  Google Scholar 

  • Molnar M, Leitgib L, Gruiz K, Fenyvesi E, Szaniszlo N, Szejtli J, Fava F (2005) Enhanced biodegradation of transformer oil in soils with cyclodextrin-from the laboratory to the field. Biodegradation 16:159–168

    Article  CAS  Google Scholar 

  • Monard C, Martin-Laurent F, Vecchiato C, Francez AJ, Vandenkoornhuyse P, Binet F (2008) Combined effect of bioaugmentation and bioturbation on atrazine degradation in soil. Soil Biol Biochem 40:2253–2259

    Article  CAS  Google Scholar 

  • Moslemy P, Neufeld RJ, Guiot SR (2002) Biodegradation of gasoline by gellam gum-encapsulated bacterial cells. Biotechnol Bioeng 80:175–184

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30:587–601

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal–bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267

    Article  CAS  Google Scholar 

  • Munoz R, Jacinto M, Guieysse B, Mattiasson B (2005) Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Appl Microbiol Biotechnol 67:699–707

    Article  CAS  Google Scholar 

  • Nagata T, Morita H, Akizawa T, Pan-Hou H (2010) Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution. Appl Microbiol Biotechnol 87:781–786

    Article  CAS  Google Scholar 

  • Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J (2008) Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) using zerovalent iron nanoparticles. Environ Sci Technol 42:4364–4370

    Article  CAS  Google Scholar 

  • Nedunuri K, Govindaraju R, Banks M, Schwab A, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490

    Article  CAS  Google Scholar 

  • Nelson C, Brown RA, Shelley S (1994) Adapting ozonation for soil and groundwater cleanup. Chem Eng, pp. 18–22

    Google Scholar 

  • Nelson L, Barker J, Li T, Thomson N, Loannidis M, Chatzis J (2009) A field trial to assess the performance of CO2 supersaturated water injection for residual volatile LNAPL recovery. J Contam Hydrol 109:82–90

    Article  CAS  Google Scholar 

  • Neuhauser EF, Ripp JA, Azzolina NA, Madsen EL, Mauro DM, Taylor T (2009) Monitored natural attenuation of manufactured gas plant tar mono and polycylic aromatic hydrocarbons in groundwater: a 14-year field study. Ground Water Monit Remed 29:66–76

    Article  CAS  Google Scholar 

  • Nilsson B, Tzovolou D, Jeczalik M, Kasela T, Slack W, Klint KE, Haeseler F, Tsakiroglou CD (2011) Combining steam injection with hydraulic fracturing for the in situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel. J Environ Manage 92:695–707

    Article  CAS  Google Scholar 

  • Nobre R, Nobre MM (2004) Natural attenuation of chlorinated organics in a shallow sand acquifer. J Hazard Mater 110:129–137

    Article  CAS  Google Scholar 

  • Noeline B, Manohar D, Anirudhan T (2005) Kinetic and equilibrium modeling of lead (II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Sep Purif Technol 45:131–140

    Article  CAS  Google Scholar 

  • Noonkester JV, Nichols RL, Dixon KL (2005) Innovative technologies and vadose zone treatment of chlorinated volatile organic compounds: case study. Environ Geosci 12:219–233

    Article  Google Scholar 

  • Noubactep C, Care S (2010) On nanoscale metallic iron for groundwater remediation. J Hazard Mater 182:923–927

    Article  CAS  Google Scholar 

  • Novakova M, Mackova M, Chrastilova Z, Viktorova J, Szekeres M, Demnerova K, Macek T (2009) Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnol Bioeng 102:29–37

    Article  CAS  Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak production association, Russia. Science 314:638–641

    Article  CAS  Google Scholar 

  • Nwokocha JV, Nwaulari JN, Lebe AN (2012) The microbial fuel cell: the solution to the global energy and environmental crises? Int J Acad Res Prog Edu Develop 1:2226–6348

    Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630−633

    Google Scholar 

  • Okonkwo JO, Mutshatshi TN, Botha B, Agyei N (2008) DDT, DDE and DDD in human milk from South Africa. Bull Environ Contam Toxicol 81:348–354

    Article  CAS  Google Scholar 

  • Olaniran AO, Pillay D, Pillay B (2006) Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere 63:600–608

    Article  CAS  Google Scholar 

  • Olyaie E, Banejad H, Afkhami A, Rahmani A, Khodaveisi J (2012) Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Sep Purif Technol 95:10–15

    Article  CAS  Google Scholar 

  • Oonnittan A, Shrestha RA, Sillanpaa M (2009) Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation. J Hazard Mater 162:989–993

    Article  CAS  Google Scholar 

  • Otterpohl R (2002) Options for alternative types of sewerage and treatment systems directed to improvement of the overall performance. Water Sci Technol 45:149–158

    CAS  Google Scholar 

  • Otto S, Vianello M, Infantino A, Zanin G, Di Guardo A (2008) Effect of a full-grown vegetative filter strip on herbicide runoff: maintaining of filter capacity over time. Chemosphere 71:74–82

    Article  CAS  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  CAS  Google Scholar 

  • Park JY, Kim SJ, Lee YJ, Baek K, Yang JW (2005) EK-Fenton process for removal of phenanthrene in a two-dimensional soil system. Eng Geol 77:217–224

    Article  Google Scholar 

  • Patel J, Wilson G, McKay RML, Vincent R, Xu Z (2010) Self-immobilization of recombinant Caulobacter crescentus and its application in removal of cadmium from water. Appl Biochem Biotechnol 162:1160–1173

    Article  CAS  Google Scholar 

  • Paul D, Pandey G, Jain RK (2005) Suicidal genetically engineered microorganism for bioremediation: need and perspectives. Bioessays 27:563–573

    Article  CAS  Google Scholar 

  • Pedersen AJ, Kristensen IV, Ottosen LM, Ribeiro AB, Villumsen A (2005) Electrodialytic remediation of CCA treated waste wood in pilot scale. Eng Geol 77:331–338

    Article  Google Scholar 

  • Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611

    Article  CAS  Google Scholar 

  • Pham TD, Shrestha RA, Virkutyte J, Sillanpaa M (2009) Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin. Electrochim Acta 54:1403–1407

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Him HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effects on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Phillips D, Noonten TV, Bastiaens L, Russell M, Dickson K, Plant S, Ahad J, Newton T, Elliot T, Kalin R (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ Sci Technol 44:3861–3869

    Article  CAS  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EA (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  Google Scholar 

  • Pino M, Penuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeter Biodegrad 65:827–831

    Article  CAS  Google Scholar 

  • Plangklang P, Reungsang A (2009) Bioaugmentation of carbofuran residues in soil using Burkholderia cepacia PCL3 adsorbed on agricultural residues. Int Biodeter Biodegrad 63:515–522

    Article  CAS  Google Scholar 

  • Newswire PR (2012) Textile mills: Global industry guide. PR Newswire. United business media, New York, NY

    Google Scholar 

  • Pulford I, Riddell-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation 4:59–72

    Article  CAS  Google Scholar 

  • Qin CY, Zhao YS, Zheng W, Li YS (2009) Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction. J Hazard Mater 176:294–299

    Article  CAS  Google Scholar 

  • RAAG (2000) Evaluation of risk based corrective action model. Remediation Alternative Assessment Group, Memorial University of Newfoundland, Newfoundland, Canada

    Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr I, Khanafer M (2007) Hydrocarbon utilization by nodule bacteria and plant growth-promoting rhizobacteria. Int J Phytoremediation 9:475–486

    Article  CAS  Google Scholar 

  • Rahbeh M, Mohtar R (2007) Application of multiphase transport models to field remediation by air sparging and soil vapor extraction. J Hazard Mater 143:156–170

    Article  CAS  Google Scholar 

  • Rajan C (2011) Nanotechnology in groundwater remediation. Int J Environ Sci Dev 2:182–187

    Article  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons, Inc., New York, NY, pp 221–226

    Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926

    Article  CAS  Google Scholar 

  • Recillas S, Colon J, Casals E, Gonzalez E, Puntes V, Sanchez A, Font X (2010) Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J Hazard Mater 184:425–431

    Article  CAS  Google Scholar 

  • Reddy KR, Al-Hamdan AZ, Ala P (2010) Enhanced soil flushing for simultaneous removal of PAHs and heavy metals from industrial contaminated soil. J Hazard Toxicol Radioact Waste 15:166–174

    Article  CAS  Google Scholar 

  • Reddy KR, Chinthamreddy S (2003) Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. J Geotech Geoenviron Eng 129:263–277

    Article  CAS  Google Scholar 

  • Reddy KR, Saichek RE (2003) Effect of soil type on electrokinetic removal of phenanthrene using surfactants and co-solvents. J Environ Eng 129:336–346

    Article  CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  CAS  Google Scholar 

  • Rickerby D, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 8:19–24

    Article  CAS  Google Scholar 

  • Ringelberg DB, Foley KL, Reynolds CM (2011) Electrogenic capacity and community composition of anodic biofilms in soil-based bioelectrochemical systems. Appl Microbiol Biotechnol 90:1805–1815

    Article  CAS  Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    Article  CAS  Google Scholar 

  • Roane T, Josephson K, Pepper I (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  CAS  Google Scholar 

  • Robert R, Faircloth H, LaMori P, Kershner M (2004) DNAPL remediation combining thermal extraction and reductive dechlorination. In: Proceedings of the 4th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 24–27 May 2004

    Google Scholar 

  • Rogers S, Ong S, Kjartanson B, Golchin J, Stenback G (2002) Natural attenuation of polycyclic aromatic hydrocarbon contaminated sites: a review. Prac Period Toxic Radioact Waste Manage 6:141–155

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • Roulier M, Kemper M, Al-Abed S, Murdoch L, Cluxton P, Chen JL, Davis-Hoover W (2000) Feasibility of electrokinetic soil remediation in horizontal Lasagna™ cells. J Hazard Mater 77:161–176

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    Article  CAS  Google Scholar 

  • Rugh CL, Bizily SP, Meagher RB (2000) Phytoremediation of environmental mercury pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, NY, pp 151–171

    Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Article  CAS  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res 37:3472–3480

    Article  CAS  Google Scholar 

  • Safonova E, Kvitko K, Iankevitch M, Surgko L, Afti I, Reisser W (2004) Biotreatment of industrial wastewater by selected algal–bacterial consortia. Eng Life Sci 4:347–353

    Article  CAS  Google Scholar 

  • Saha S, Pal A, Kundu S, Basu S, Pal T (2009) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893

    Article  CAS  Google Scholar 

  • Saichek RE, Reddy KR (2005) Surfactant enhanced electrokinetic remediation of polycylic aromatic hydrocarbons in heterogeneous subsurface environments. J Environ Eng Sci 4:327–339

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong C, Yasumira A (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6:61–70

    CAS  Google Scholar 

  • Salanitro JP, Johnson PC, Spinnler GE, Maner PM, Wisniewski HL, Bruce C (2000) Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34:4152–4162

    Article  CAS  Google Scholar 

  • Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355

    Article  CAS  Google Scholar 

  • Sannasi P, Kader J, Ismail BS, Salmijah S (2006) Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium. Bioresour Technol 97:740–747

    Article  CAS  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173

    Article  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 157:448–454

    Article  CAS  Google Scholar 

  • Sarkar B, Xi Y, Megharaj M, Naidu R (2011) Orange II adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide: an isothermal and kinetic study. Appl Clay Sci 51:370–374

    Article  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195

    Article  CAS  Google Scholar 

  • Schaefer CE, Lippincott DR, Steffan RJ (2010) Field‐scale evaluation of bioaugmentation dosage for treating chlorinated ethenes. Ground Water Monit Remed 30:113–124

    Article  CAS  Google Scholar 

  • Scherer MM, Richter S, Valentine RL, Alvarez PJJ (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater cleanup. Crit Rev Microbiol 26:221–264

    Article  CAS  Google Scholar 

  • Schmidt R, Gudbjerg J, Sonnenborg TO, Jensen KH (2002) Removal of NAPLs from the unsaturated zone using steam: prevention of downward migration by injecting mixtures of steam and air. J Contam Hydrol 55:233–260

    Article  CAS  Google Scholar 

  • Schnarr M, Truax C, Farquhar G, Hood E, Gonullu T, Stickney B (1998) Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. J Contam Hydrol 29:205–224

    Article  CAS  Google Scholar 

  • Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    Article  CAS  Google Scholar 

  • Scott K, Murano C (2007) A study of a microbial fuel cell battery using manure sludge waste. J Chem Technol Biotechnol 82:809–817

    Article  CAS  Google Scholar 

  • Scott-Emuakpor E, Kruth A, Todd M, Raab A, Paton G, Macphee D (2012) Remediation of 2, 4-dichlorophenol contaminated water by visible light-enhanced WO photoelectrocatalysis. Appl Catal B 123:433–439

    Article  CAS  Google Scholar 

  • Serrano A, Gallego M, Gonzalez JL, Tejada (2008) Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil. Environ Pollut 151:494–502

    Article  CAS  Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62

    Article  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. John Wiley & Sons Inc., New York, NY

    Google Scholar 

  • Sheng X, Gong J (2006) Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol Biochem 9:2587–2592

    Article  CAS  Google Scholar 

  • Shih YH, Tai YT (2010) Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere 78:1200–1206

    Article  CAS  Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanoparticle Res 13:2387–2397

    Article  CAS  Google Scholar 

  • Shu WS, Zhao YI, Yang B, Xia HP, Lan CY (2004) Accumulation of heavy metals in four grasses grown on lead and zinc mine tailings. J Environ Sci 16:730–734

    CAS  Google Scholar 

  • Singer AC, van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol 23:74–77

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  CAS  Google Scholar 

  • Singh K, Singh A, Hasan S (2006) Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour Technol 97:994–1001

    Article  CAS  Google Scholar 

  • Singhal R, Gangadhar B, Basu H, Manisha V, Naidu G, Reddy A (2012) Remediation of malathion contaminated soil using zero-valent iron nano-particles. Am J Anal Chem 3:76–82

    Article  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy M, Sopory S (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  CAS  Google Scholar 

  • Skubal L, Meshkov N, Rajh T, Thurnauer M (2002) Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J Photochem Photobiol C 148:393–397

    Article  CAS  Google Scholar 

  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membrane Sci 379:131–137

    Article  CAS  Google Scholar 

  • Soares AA, Albergaria JT, Domingues VF, Alvim-Ferraz MCM, Delerue-Matos C (2010) Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere 80:823–828

    Article  CAS  Google Scholar 

  • Son AJ, Shin KH, Lee JU, Kim KW (2003) Chemical and ecotoxicity assessment of PAH-contaminated soils remediated by enhanced soil flushing. Environ Eng Sci 20:197–206

    Article  CAS  Google Scholar 

  • Song Z, Orita I, Yin F, Yurimoto H, Kato N, Sakai Y, Izui K, Li K, Chen L (2010) Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde. Biotechnol Lett 32:1541–1548

    Article  CAS  Google Scholar 

  • Sood N, Patle S, Lal B (2010) Bioremediation of acidic oily sludge contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res 17:603–610

    Article  CAS  Google Scholar 

  • Sosa Alderete LG, Talano MA, Ibanez SG, Purro S, Agostini E, Milrad SR, Medina MI (2009) Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J Biotechnol 139:273–279

    Article  CAS  Google Scholar 

  • Spalding BP, Jacobs GK, Naney MT, Dunbar NW, Tixier JS, Powell TD (1992) Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL. Oak Ridge National Lab, Oak Ridge, TN

    Google Scholar 

  • Stockholm Convention (2005) Stockholm Convention: “New POPs”: Screening additional POPs candidates. Secretariat of the Stockholm Convention, United Nations Environment Programme (UNEP), Chatelaine, Switzerland

    Google Scholar 

  • Stockholm Convention (2010) The listing of POPs in the Stockholm convention. Secretariat of the Stockholm Convention, United Nations Environment Programme (UNEP), Chatelaine, Switzerland

    Google Scholar 

  • Straube W, Nestler C, Hansen L, Ringleberg D, Pritchard P, Jones‐Meehan J (2003) Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnol 23:179–196

    Article  CAS  Google Scholar 

  • Strigel J, Sanders DA, Veenstra JN (2001) Treatment of contaminated groundwater using permeable reactive barriers. Environ Geosci 8:258–265

    Article  Google Scholar 

  • Strik DP, Terlouw H, Hamelers HV, Buisman CJ (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668

    Article  CAS  Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    Article  CAS  Google Scholar 

  • Strycharz SM, Woodward TL, Johnson JP, Nevin KP, Sanford RA, Loeffler FE, Lovley DR (2008) Graphite electrodes as a sole electron donor for reductive dechlorination of tetrachloroethene by Geobacter lovleyi. Appl Environ Microbiol 74:5943–5947

    Article  CAS  Google Scholar 

  • Su D, Li PJ, Frank S, Xiong XZ (2006) Biodegradation of benzo(a)pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci 18:1204–1209

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907

    Article  CAS  Google Scholar 

  • Sugiyama A, Sekiya J (2005) Homoglutathione confers tolerance to acifluorfen in transgenic tobacco plants expressing soybean homoglutathione synthetase. Plant Cell Physiol 46:1428–1432

    Article  CAS  Google Scholar 

  • Sui H, Li X, Huang G, Jiang B (2006) A study on cometabolic bioventing for the in-situ remediation of trichloroethylene. Environ Geochem Health 28:147–152

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Sutter J (2012) Case summary: electrical resistance heating. ICN Pharmaceuticals, Inc., Portland, Oregon, EPA Technology Innovation Office, Chicago, IL

    Google Scholar 

  • Svab M, Kubal M, Mullerova M, Raschman R (2009) Soil flushing by surfactant solution: pilot-scale demonstration of complete technology. J Hazard Mater 163:410–417

    Article  CAS  Google Scholar 

  • Switzer C, Kosson DS (2007) Soil vapor extraction performance in layered vadose zonematerials. Vadose Zone J 6:397–405

    Article  CAS  Google Scholar 

  • Tai HS, Jou CJG (1999) Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere 38:2667–2680

    Article  CAS  Google Scholar 

  • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165

    Article  CAS  Google Scholar 

  • Tang X, He L, Tao X, Dang Z, Guo C, Lu G, Li X (2010) Construction of an artificial microalgal–bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162

    Article  CAS  Google Scholar 

  • TerraTherm (2000) Thermal technologies: case studies, Indiana. TerraTherm, Gardner, MA

    Google Scholar 

  • TerraTherm (2010) Remediation case studies utilizing in situ thermal desorption (ISTD). Thermal cleaning technologies, Fitchburg, MA

    Google Scholar 

  • Testa SM, Winegardner DL (1990) Restoration of petroleum-contaminated aquifers, vol 2. CRC Press, Boca Raton, FL, pp 446–448

    Google Scholar 

  • Thavamani P, Megharaj M, Naidu R (2012) Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation 23:823–835

    Article  CAS  Google Scholar 

  • Thompson L (2002) Mixed waste treatment cost analyses for a range of Geomelt vitrification process configurations. In: WM’02 conference, Tucson, AZ, 24–28 February 2002, p. 13

    Google Scholar 

  • Tiehm A, Krabnitzer S, Koltypin Y, Gedanken A (2009) Chlroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrason Sonochem 16:617–621

    Article  CAS  Google Scholar 

  • Tomlinson D, Thomson N, Johnson R, Redman J (2003) Air distribution in the Borden aquifer during in situ air sparging. J Contam Hydrol 67:113–132

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Trindade P, Sobral L, Rizzo A, Leite S, Soriano A (2005) Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere 58:515–522

    Article  CAS  Google Scholar 

  • Triplett Kingston JL, Dahlen PR, Johnson PC (2010) State of the practice review of in situ thermal technologies. Ground Water Monit Remed 30:64–72

    Article  Google Scholar 

  • Truex MJ, Macbeth TW, Vermeul VR, Fritz GB, Mendoza DP, Mackley RD, Wietsma TW, Sanderg G, Powell T, Powers J (2011) Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation. Environ Sci Technol 45:5346–5351

    Article  CAS  Google Scholar 

  • Truu J, Talpsep E, Vedler E, Heinaru E, Heinaru A (2003) Enhanced biodegradation of oil shale chemical industry solid wastes by phytoremediation and bioaugmentation. Oil Shale 20:421–428

    CAS  Google Scholar 

  • Tsai TT, Kao CM, Yeh TY, Liang SH, Chien HY (2009) Remediation of fuel oil-contaminated soils by a three-stage treatment system. Environ Eng Sci 26:651–659

    Article  CAS  Google Scholar 

  • Tsutsumi H, Kono M, Takai K, Manabe T, Haraguchi M, Yamamoto I, Oppenheimer C (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. III. Field tests of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar Pollut Bull 40:320–324

    Article  CAS  Google Scholar 

  • Tunali S, Kiran I, Akar T (2005) Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng 18:681–689

    Article  CAS  Google Scholar 

  • Tungittiplakorn W, Lion LW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  Google Scholar 

  • Tzovolou DN, Aggelopoulos CA, Theodoropoulou MA, Tsakiroglon CD (2010) Remediation of the unsaturated zone of NAPL-polluted low permeability soils with steam injection: an experimental study. J Soil Sediment 11:72–81

    Article  CAS  Google Scholar 

  • Udell KS, McCarter RL (1998) Steam enhanced extraction of wood treatment chemicals from soils. In: Wickramanayake GE, Hinchee RE (eds) Physical, chemical and thermal technologies: remediation of chlorinated and recalcitrant compounds. Battelle, Columbus, OH, pp 121–126

    Google Scholar 

  • Udovic M, Plavc Z, Lestan D (2007) The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere 70:126–134

    Article  CAS  Google Scholar 

  • US DOE (2005) Record of decision for interim remedial action for the groundwater operable unit for the volatile organic compound contamination at the C-400 cleaning building at the Paducah gaseous diffusion plant, Kentucky. US Department of energy, Washington, DC

    Google Scholar 

  • US EPA (1990) Handbook of in-situ treatment of hazardous waste contaminated soils. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • US EPA (1997a) Cost and performance report: In-situ vitrification at the Parsons chemical/ ETM enterprises superfund site, Grand Ledge, Michigan. US EPA Office of Research and Development, Washington, DC

    Google Scholar 

  • US EPA (1997b) Wasatch chemical company superfund site: five-year review report. US EPA Office of Research and Development, Washington, DC

    Google Scholar 

  • US EPA (2001) Steam injection used in unsaturated zone at german landfill. US EPA Technology Innovation and Field Service Division, Washington, DC

    Google Scholar 

  • US EPA (2003) Dense nonaqueous phase liquids (DNAPLs) treatment technologies: soil vapor extraction and air sparging. US EPA Office of Superfund Remediation and Technology Innovation, Washington, DC

    Google Scholar 

  • US EPA (2004) In situ thermal treatment technologies: fundamentals and field applications. US EPA Office of Research and Development, Washington, DC

    Google Scholar 

  • US EPA (2006) In situ treatment technologies for contaminated soil. US EPA Office of Research and Development, Washington, DC

    Google Scholar 

  • US EPA (2012) About remediation technologies. US EPA Office of Superfund Remediation and Technology Innovation, Washington, DC

    Google Scholar 

  • USGS (2011) Mineral commodity summaries 2011. US Geological Survey, Reston, VA

    Google Scholar 

  • Uzum C, Shahwan T, Eroğlu A, Lieberwirth I, Scott T, Hallam K (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144:213–220

    Article  CAS  Google Scholar 

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  CAS  Google Scholar 

  • Van der Gast CJ, Whiteley AS, Thompson IP (2004) Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ Microbiol 6:254–263

    Article  Google Scholar 

  • Van Dillewijin P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1283–1378

    Google Scholar 

  • Van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Venkatraman SN, Schuring JR, Boland TM, Bossert ID, Kosson DS (1998) Application of pneumatic fracturing to enhance in situ remediation. J Soil Contam 7:143–162

    Article  CAS  Google Scholar 

  • Verstraete W, Wittelbolle L, Heylen K, Vanparys B, de Vos P, Van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126

    Article  CAS  Google Scholar 

  • Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack F, Lust N (2003) Phytoremediation prospects of willow stand on contaminated sediment: a field trial. Environ Pollut 126:275–282

    Article  CAS  Google Scholar 

  • Vienna JD (2010) Nuclear waste vitrification in the United States: recent developments and future options. Int J Appl Glass Sci 1:309–321

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Vik E, Bardos P, Brogan J, Edwards D, Gondi F, Henrysson T, Jensen BK, Jorge C, Mariotti C, Nathanail P (2001) Towards a framework for selecting remediation technologies for contaminated sites. Land Contam Reclam 9:119–127

    Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation: critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  • Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846

    Article  CAS  Google Scholar 

  • Vishnoi SR, Srivastava PN (2008) Phytoremediation: green for environmental clean. In: Proceedings of 12th World Lake Conference, Jaipur, India, October 28–November 2 2008, pp. 1016–1021

    Google Scholar 

  • Volesky B (2006) Biosorption of chromate and vanadate species with waste crab shells. Hydrometallurgy 84:28–36

    Article  CAS  Google Scholar 

  • Vouillamoz J, Mike M (2001) Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci Technol 43:291–295

    CAS  Google Scholar 

  • Wait ST, Thomas D (2003) The characterisation of base oil recovered from the low temperature thermal desorption of drill cuttings. In: Proceedings of the SPE/EPA exploration and production environmental conference, San Antonio, TX, 10–12 March 2003, pp. 151–158

    Google Scholar 

  • Wan C, Du M, Lee DJ, Yang X, Ma W, Zheng L (2011) Electrokinetic remediation and microbial community shift of β-cyclodextrin dissolved petroleum hydrocarbon contaminated soil. Appl Microbiol Biotechnol 89:2019–2025

    Article  CAS  Google Scholar 

  • Wan J, Li Z, Lu X, Yuan S (2010) Remediation of a hexachlorobenzene contaminated soil by surfactant-enhanced electrokinetics coupled with microscale Pb/Fe PRB. J Hazard Mater 184(1–3):184–190

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2009) Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochem 44:296–301

    Article  CAS  Google Scholar 

  • Warshawsky D, LaDow K, Schneider J (2007) Enhanced degradation of benzo(a)pyrene by Mycobacterium sp. in conjunction with green alga. Chemosphere 69:500–506

    Article  CAS  Google Scholar 

  • Waybrant K, Ptacek C, Blowes D (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36:1349–1356

    Article  CAS  Google Scholar 

  • Wevar Oller AL, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Article  CAS  Google Scholar 

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant‐associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field‐related experiment. Microb Biotechnol 6:288–299

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  Google Scholar 

  • WHO (2003) Arsenic in drinking-water: Background document for development of WHO guidelines for drinking-water quality. World Health Organisation, Geneva, Switzerland

    Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysios D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Wilkin RT, Su C, Ford RG, Paul CJ (2006) Chromium removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ Sci Technol 39:4599–4605

    Article  CAS  Google Scholar 

  • Wilson WPG (2001) Multi-phase extraction and air sparging/soil vapor extraction at Scotchman 94, Florence, South Carolina. South Carolina Department of Health and Environmental Control, Columbia

    Google Scholar 

  • Wolicka D, Suszek A, Borkowski A, Bielecka A (2009) Application of aerobic microorganisms in bioremediation in-situ of soil contaminated by petroleum products. Bioresour Technol 100:3221–3227

    Article  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006a) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  Google Scholar 

  • Wu TN (2008) Environmental perspectives of microwave applications as remedial alternatives: review. Pract Period Hazard Toxic Radioact Waste Manag 12:102–115

    Article  CAS  Google Scholar 

  • Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J (2006b) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995

    Article  CAS  Google Scholar 

  • Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z (2008) Bioremediation of polycylic aromatic hydrocarbons contaminated soil with Monilinia sp. degradation and microbial community analysis. Biodegradation 19:247–257

    Article  CAS  Google Scholar 

  • Xiao S, Shen M, Guo R, Huang Q, Wang S, Shi X (2010) Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J Mater Chem 20:5700–5708

    Article  CAS  Google Scholar 

  • Xiong H, van der Lelie D, Gang O (2009) Phase behavior of nanoparticles assembled by DNA linkers. Phys Rev Lett 102:015504

    Article  CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  CAS  Google Scholar 

  • Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J, Jaffe PR, Morrison SJ, Dayvault RD, White DC (2007) Uranium removal from groundwater via in-situ biostimulation: field-scale modelling of transport and biological processes. J Contam Hydrol 93:216–235

    Article  CAS  Google Scholar 

  • Yang GC, Chang YI (2011) Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep Puri Technol 79:278–284

    Article  CAS  Google Scholar 

  • Yang GC, Liu CY (2001) Remediation of TCE contaminated soils by in situ EK-Fenton process. J Hazard Mater 85:317–331

    Article  CAS  Google Scholar 

  • Yang JW, Lee YJ, Park JY, Kim SJ, Lee JY (2005) Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Eng Geol 77:243–251

    Article  Google Scholar 

  • Yang L (2008) Phytoremediation: an ecotechnology for treating contaminated sites. Pract Period Hazard Toxic Radioac Waste Manage 12:290–298

    Article  CAS  Google Scholar 

  • Yen HK, Chang NB, Lin TF (2003) Bioslurping model for assessing light hydrocarbon recovery in contaminated unconfined aquifer. I: Simulation analysis. Pract Period Hazard Toxic Radioact Waste Manage 7:114–130

    Article  CAS  Google Scholar 

  • Yu K, Wong A, Yau K, Wong Y, Tam N (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  CAS  Google Scholar 

  • Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206

    Article  CAS  Google Scholar 

  • Yuan S, Zheng Z, Chen J, Lu X (2009) Use of solar cell in electrokinetic remediation of cadmium contaminated soil. J Hazard Mater 162:1583–1587

    Article  CAS  Google Scholar 

  • Yuan SJ, Sheng GP, Li WW, Lin ZQ, Zheng RJ, Tong ZH, Yu HQ (2010a) Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ Sci Technol 44:5575–5580

    Article  CAS  Google Scholar 

  • Yuan Y, Zhou S, Zhuang L (2010b) A new approach to in situ sediment remediation based on air-cathode microbial fuel cells. J Soil Sediment 10:1427–1433

    Article  CAS  Google Scholar 

  • Zaera F (2012) New challenges in heterogeneous catalysis for the 21st century. Catal Lett 142:501–516

    Article  CAS  Google Scholar 

  • Zenker MJ, Brubaker G, Shaw D, Knight S (2005) Passive bioventing pilot study at a former petroleum refinery. In: Proceedings of the 8th International Symposium In-situ and On-site Bioremediation, Baltimore, 6–9 June 2005

    Google Scholar 

  • Zhan H, Park E (2002) Vapor flow to horizontal wells in unsaturated zones. Soil Sci Soc Am J 66:710–721

    Article  CAS  Google Scholar 

  • Zhang D, Wei S, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo Z (2010a) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2:917–919

    Article  CAS  Google Scholar 

  • Zhang F, Saito T, Cheng S, Hickner MA, Logan BE (2010b) Microbial fuel cell cathodes with poly (dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environ Sci Technol 44:1490–1495

    Article  CAS  Google Scholar 

  • Zhang K, Hua XF, Han HL, Wang J, Miao CC, Xu YY, Huang ZD, Zhang H, Yang JM, Jin WB (2008) Enhanced bioaugmentation of petroleum and salt contaminated soil using wheat straw. Chemosphere 73:1387–1392

    Article  CAS  Google Scholar 

  • Zhang L, Liu C, Zhuang L, Li W, Zhou S, Zhang J (2009) Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens Bioelectron 24:2825–2829

    Article  CAS  Google Scholar 

  • Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater 145:424–430

    Article  CAS  Google Scholar 

  • Zhong X, Royer S, Zhang H, Huang Q, Xiang L, Valange S, Barrault J (2011) Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of CI Acid Orange 7 using sono-photo-fenton process. Sep Purif Technol 80:163–171

    Article  CAS  Google Scholar 

  • Zhou DM, Cang L, Alshawabkeh AN, Wang YJ, Hao XZ (2006) Pilot-scale electrokinetic treatment of a Cu contaminated red soil. Chemosphere 63:964–971

    Article  CAS  Google Scholar 

  • Zhou DM, Deng CF, Cang L, Alshawabkeh AN (2005) Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere 61:519–527

    Article  CAS  Google Scholar 

  • Zhou ML, Tang YX, Wu YM (2013) Plant hairy roots for remediation of aqueous pollutants. Plant Mol Biol Rep 31:1–8

    Article  CAS  Google Scholar 

  • Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7, e46286

    Article  CAS  Google Scholar 

  • Zhuang P, Ye Z, Lan C, Xie Z, Shu W (2005) Chemically assisted phytoextraction of heavy metals contaminated soils using three plant species. Plant Soil 276:153–162

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  Google Scholar 

Download references

Acknowledgement

SK thanks the Australian Government and the University of South Australia for the International Postgraduate Research Scholarship, and the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) for the CRC CARE top-up fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallavarapu Megharaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., Naidu, R. (2016). In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 236. Reviews of Environmental Contamination and Toxicology, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-20013-2_1

Download citation

Publish with us

Policies and ethics