Skip to main content

Fast Optimal Transport Averaging of Neuroimaging Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Abstract

Knowing how the Human brain is anatomically and functionally organized at the level of a group of healthy individuals or patients is the primary goal of neuroimaging research. Yet computing an average of brain imaging data defined over a voxel grid or a triangulation remains a challenge. Data are large, the geometry of the brain is complex and the between subjects variability leads to spatially or temporally non-overlapping effects of interest. To address the problem of variability, data are commonly smoothed before performing a linear group averaging. In this work we build on ideas originally introduced by Kantorovich [18] to propose a new algorithm that can average efficiently non-normalized data defined over arbitrary discrete domains using transportation metrics. We show how Kantorovich means can be linked to Wasserstein barycenters in order to take advantage of the entropic smoothing approach used by [7]. It leads to a smooth convex optimization problem and an algorithm with strong convergence guarantees. We illustrate the versatility of this tool and its empirical behavior on functional neuroimaging data, functional MRI and magnetoencephalography (MEG) source estimates, defined on voxel grids and triangulations of the folded cortical surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://surfer.nmr.mgh.harvard.edu/.

References

  1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benamou, J.D.: Numerical resolution of an unbalanced mass transport problem. ESAIM. Math. Model. Numer. Anal. 37(5), 851–868 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benamou, J.D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative bregman projections for regularized transportation problems. arXiv preprint arXiv:1412.5154 (2014)

  4. Bertsimas, D., Tsitsiklis, J.: Introduction to linear optimization. Athena Scientific Belmont, Boston (1997)

    Google Scholar 

  5. Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced and radon wasserstein barycenters of measures. J. Math. Imaging Vis. 51(1), 1–24 (2014)

    Google Scholar 

  6. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. Adv. Neural Inf. Process. Sys. 26, 2292–2300 (2013)

    Google Scholar 

  7. Cuturi, M., Doucet, A.: Fast computation of wasserstein barycenters. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14) (2014)

    Google Scholar 

  8. Cuturi, M., Peyré, G., Rolet, A.: A smoothed dual approach for variational wasserstein problems. arXiv preprint arXiv:1503.02533 (2015)

  9. Dale, A., Liu, A., Fischl, B., Buckner, R.: Dynamic statistical parametric neurotechnique mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000)

    Article  Google Scholar 

  10. Descoteaux, M., Deriche, R., Knosche, T., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)

    Article  Google Scholar 

  11. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)

    Article  Google Scholar 

  12. Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., Parkkonen, L., Hämäläinen, M.: MNE software for processing MEG and EEG data. NeuroImage 86, 446–460 (2014)

    Article  Google Scholar 

  13. Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen, M., Kowalski, M.: Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations. NeuroImage 70, 410–422 (2013)

    Article  Google Scholar 

  14. Guittet, K.: Extended kantorovich norms: a tool for optimization. Technical repot 4402, INRIA (2002)

    Google Scholar 

  15. Hanin, L.: An extension of the kantorovich norm. Contemp. Math 226, 113–130 (1999)

    MathSciNet  Google Scholar 

  16. Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical bayesian framework for the EEG/MEG inverse problem: generative models for multisubject and multimodal integration. Front. Hum. Neuro. 5(76), 141–153 (2011)

    Google Scholar 

  17. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, 151–160 (2004)

    Article  Google Scholar 

  18. Kantorovich, L., Rubinshtein, G.: On a space of totally additive functions, vestn. Vestn Lening. Univ. 13, 52–59 (1958)

    MATH  Google Scholar 

  19. Kanwisher, N., Mcdermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)

    Google Scholar 

  20. Pele, O., Werman, M.: A linear time histogram metric for improved SIFT matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 495–508. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Le Bihan, D., Poline, J., Dehaene, S.: Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC neuroscience 8, 91 (2007)

    Article  Google Scholar 

  22. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Rubner, Y., Guibas, L., Tomasi, C.: The earth movers distance, multi-dimensional scaling, and color-based image retrieval. In: Proceedings of the ARPA Image Understanding Workshop, pp. 661–668 (1997)

    Google Scholar 

  24. Scherg, M., Von Cramon, D.: Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 62(1), 32–44 (1985)

    Article  Google Scholar 

  25. Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., Poline, J.B.: Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. NeuroImage 35(1), 105–120 (2007)

    Article  Google Scholar 

  26. Villani, C.: Optimal transport: Old and New. Springer, Heidelberg (2009)

    Book  Google Scholar 

  27. Wipf, D., Ramirez, R., Palmer, J., Makeig, S., Rao, B.: Analysis of empirical bayesian methods for neuroelectromagnetic source localization. In: Proceedings of the Neural Information Processing Systems (NIPS) (2007)

    Google Scholar 

Download references

Acknowledgements

A. Gramfort was supported by the ANR grant THALAMEEG, ANR-14-NEUC-0002-01. M. Cuturi gratefully acknowledges the support of JSPS young researcher A grant 26700002, the gift of a K40 card from NVIDIA and fruitful discussions with K.R. Müller. The work of G. Peyré has been supported by the European Research Council (ERC project SIGMA-Vision).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gramfort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gramfort, A., Peyré, G., Cuturi, M. (2015). Fast Optimal Transport Averaging of Neuroimaging Data. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics