Skip to main content

A Riemannian Framework for Intrinsic Comparison of Closed Genus-Zero Shapes

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Abstract

We present a framework for intrinsic comparison of surface metric structures and curvatures. This work parallels the work of Kurtek et al. on parameterization-invariant comparison of genus zero shapes. Here, instead of comparing the embedding of spherically parameterized surfaces in space, we focus on the first fundamental form. To ensure that the distance on spherical metric tensor fields is invariant to parameterization, we apply the conjugation-invariant metric arising from the L 2 norm on symmetric positive definite matrices. As a reparameterization changes the metric tensor by a congruent Jacobian transform, this metric perfectly suits our purpose. The result is an intrinsic comparison of shape metric structure that does not depend on the specifics of a spherical mapping. Further, when restricted to tensors of fixed volume form, the manifold of metric tensor fields and its quotient of the group of unitary diffeomorphisms becomes a proper metric manifold that is geodesically complete. Exploiting this fact, and augmenting the metric with analogous metrics on curvatures, we derive a complete Riemannian framework for shape comparison and reconstruction. A by-product of our framework is a near-isometric and curvature-preserving mapping between surfaces. The correspondence is optimized using the fast spherical fluid algorithm. We validate our framework using several subcortical boundary surface models from the ADNI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 949–958 (2004)

    Article  Google Scholar 

  2. Zeng, W., Lui, L.M., Luo, F., Chan, T.F.-C., Yau, S.-T., Gu, D.X.: Computing quasiconformal maps using an auxiliary metric and discrete curvature flow. Numer. Math. 121, 671–703 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Shi, J., Thompson, P.M., Gutman, B., Wang, Y.: Surface fluid registration of conformal representation: application to detect disease burden and genetic influence on hippocampus. NeuroImage 78, 111–134 (2013)

    Article  Google Scholar 

  4. Yeo, B.T.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med Imaging 29, 650–668 (2010)

    Article  Google Scholar 

  5. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)

    Article  Google Scholar 

  6. Gutman, B.A., Madsen, S.K., Toga, A.W., Thompson, P.M.: A family of fast spherical registration algorithms for cortical shapes. In: Shen, L., Liu, T., Yap, P.-T., Huang, H., Shen, D., Westin, C-Fk (eds.) MBIA 2013. LNCS, vol. 8159, pp. 246–257. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Med. Imaging 5, 1435–1447 (1996)

    Google Scholar 

  8. Yonggang, S., Rongjie, L., Wang, D.J.J., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Metric optimization for surface analysis in the Laplace-Beltrami embedding space. IEEE Trans. Med. Imaging 33, 1447–1463 (2014)

    Article  Google Scholar 

  9. Wang, Y., Yuan, L., Shi, J., Greve, A., Ye, J., Toga, A.W., Reiss, A.L., Thompson, P.M.: Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis. NeuroImage 74, 209–230 (2013)

    Article  Google Scholar 

  10. Fletcher, P.T., Venkatasubramanian, S., Joshi, S.: The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage 45, S143–S152 (2009)

    Article  Google Scholar 

  11. Joshi, S.H., Joshi, A.A., Gutman, B., Toga, A.W., McMahon, K., De Zubicaray, G., Martin, N., Wright, M.J., Thompson, P.M.: Genetic influences on sulcal patterns of the brain. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 414–417 (2012)

    Google Scholar 

  12. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87, 250–262 (2007)

    Article  MATH  Google Scholar 

  13. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vision 41, 61–84 (2001)

    Article  MATH  Google Scholar 

  14. Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.: An efficient representation for computing geodesics between n-dimensional elastic shapes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  15. Bauer, M., Bruveris, M.: A new Riemannian setting for surface registration. In: 3rd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, pp. 182–194 (2011)

    Google Scholar 

  16. Kurtek, S., Klassen, E., Zhaohua, D., Jacobson, S.W., Jacobson, J.B., Avison, M.J., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans. Med. Imaging 30, 849–858 (2011)

    Article  Google Scholar 

  17. Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type. NeuroImage 40, 68–76 (2008)

    Article  Google Scholar 

  18. Ebin, D.G.: On the space of Riemannian metrics. Bull. Am. Math. Soc. 74(5), 1001–1003 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  19. Clarke, B.: The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calc. Var. 39, 533–545 (2010)

    Article  MATH  Google Scholar 

  20. Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vision 50, 60–97 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Millman, R.S., Parker, G.D.: Elements of Differential Geometry. Prentice-Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

  23. Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Leow, A.D., Yanovsky, I., Chiang, M.C., Lee, A.D., Klunder, A.D., Lu, A., Becker, J.T., Davis, S.W., Toga, A.W., Thompson, P.M.: Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Trans. Med. Imaging 26, 822–832 (2007)

    Article  Google Scholar 

  25. Woods, R.P.: Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage 18(3), 769–788 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris A. Gutman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gutman, B.A. et al. (2015). A Riemannian Framework for Intrinsic Comparison of Closed Genus-Zero Shapes. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics