Skip to main content

Omics and Biomarkers Development for Intestinal Tumorigenesis

  • Chapter
  • First Online:
Book cover Intestinal Tumorigenesis
  • 513 Accesses

Abstract

While considerable research into colorectal cancer (CRC) has implicated many genetic alterations that trigger the disease and sustain its progression, there are few well-validated, clinically useful molecular biomarkers of CRC. The observation that cancer is highly diverse across individual tumors is manifested at the molecular level by concomitantly diverse patterns of gene expression. However, while analysis of gene expression has been used to identify candidate biomarkers of cancer, such biomarkers frequently do not cross validate well on independent datasets and this has raised legitimate concerns regarding the usefulness of gene expression based markers. It is has been postulated that by integrating the functional information of gene products into the approach, networks of mechanistically related gene products may be identified and used to develop more robust biomarkers. Many such approaches focus on established signaling pathways for this purpose; however, pathways consisting of a few proteins interacting in a serial fashion oversimplify, and provide inadequate models for, a complex phenotype (e.g. CRC) mediated by a constellation of interacting gene products. Here, we discuss several integrative techniques based on cellular networks (protein–protein interactions) and incorporation of lower-coverage, but functionally relevant proteomic data, and show the power these techniques hold for prioritizing disease genes for biomarker discovery and biological verification of function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vidal M (2005) Interactome modeling. FEBS Lett 579:1834–1838

    Article  CAS  PubMed  Google Scholar 

  2. Edelman EJ, Guinney J et al (2008) Modeling cancer progression via pathway dependencies. PLoS Comput Biol 4:e28

    Article  PubMed Central  PubMed  Google Scholar 

  3. Auffray C (2007) Protein subnetwork markers improve prediction of cancer outcome. Mol Syst Biol 3:141–142

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18(4):644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nibbe RK, Chowdhury SA et al (2011) Protein–protein interaction networks and subnetworks in the biology of disease. Wiley Interdiscip Rev Syst Biol Med 3(3):357–367

    Article  CAS  PubMed  Google Scholar 

  6. Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 3:e42

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network based classification of breast cancer metastasis. Mol Syst Biol 3:140

    Article  PubMed Central  PubMed  Google Scholar 

  8. Goh KI, Cusick ME et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Barrenas F, Chavali S et al. (2009) Network properties of complex human disease genes identified through genome-wide association studies. PLoS One 4:e8090

    Article  PubMed Central  PubMed  Google Scholar 

  10. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71(1):1–11

    Article  CAS  PubMed  Google Scholar 

  11. Vanunu O, Magger O et al (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6(1):e1000641

    Article  PubMed Central  PubMed  Google Scholar 

  12. Liu Y, Koyutürk M et al (2012) Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases. BMC Syst Biol 6(1):65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chowdhury SA, Nibbe RK et al (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18(3):263–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nibbe RK, Markowitz S et al (2009) Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics 8(4):827–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Friedman DB, Hill S et al (2004) Proteome analysis of human colon cancer by two-dimensional difference electrophoresis and mass spectrometry. Proteomics 4:793–811

    Article  CAS  PubMed  Google Scholar 

  16. Prasad TSK, Goel R et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

    Article  CAS  Google Scholar 

  17. Ries LAG, Melbert D et al (2007) SEER cancer statistics review, 1975–2004, National Cancer Institute, National Institutes of Health Bethesda, MD

    Google Scholar 

  18. Slattery ML, Samowitz et al (2004) Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic polymorphisms and colorectal cancer. Cancer Epidemiol Biomark Prev 13:1206–1214

    Google Scholar 

  19. Stallmach A, von Lampe B et al (1992) Diminished expression of integrin adhesion molecules on human colonic epithelial cells during the benign to malign tumour transformation. Gut 33:342–346

    Google Scholar 

  20. Barrett T, Wilhite SE et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41(Database issue):D991–D995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chatr-Aryamontri A, Breitkreutz BJ et al (2012) The BioGRID interaction database: 2013 update. Nucleic Acids Res 37(Database issue):D412–D416

    Google Scholar 

  22. Jensen et al (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–D416

    Google Scholar 

  23. Dudley JT, Tibshirani R (2009) Disease signatures are robust across tissues and experiments. Mol Syst Biol 5:307

    Article  PubMed Central  PubMed  Google Scholar 

  24. Turner B, Razick S (2010) iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database (Oxford) 2010:baq023

    Article  Google Scholar 

  25. Nibbe RK, Koyutürk M et al (2010) An integrative -omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput Biol 6(1):e1000639

    Article  PubMed Central  PubMed  Google Scholar 

  26. Liu X, Lin CY et al (2005) CCT chaperonin complex is required for the biogenesis of functional Plk1. Mol Cell Biol 25:4993–5010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Coghlin C, Carpenter B et al. (2006) Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer. J Pathol 210:351–357

    Article  CAS  PubMed  Google Scholar 

  28. Sjöblom T, Jones S et al. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research presented here was supported, in part, by National Institutes of Health Grants UL1-RR024989 from the National Center for Research Resources (Clinical and Translational Science Awards), P30-CA043703 from the Case Western Reserve University Cancer Center Proteomics Core, and T32-GM008803 from the NIGMS (Institutional National Research Service Award). This work was also supported, in part, by NSF CAREER Award CCF-0953195.

All inquiries related to SASSy, X-TALKER, or CRANE should be directed to john.schenkel@neoproteomics.net.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Koyuturk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koyuturk, M., Nibbe, R. (2015). Omics and Biomarkers Development for Intestinal Tumorigenesis. In: Yang, V., Bialkowska, A. (eds) Intestinal Tumorigenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-19986-3_12

Download citation

Publish with us

Policies and ethics