Skip to main content

Introduction

  • Chapter
  • First Online:
  • 345 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Within the classical framework, light is an electromagnetic wave composed by the superposition of wave contributions generated by random processes. As such, light must be treated as an stochastic process itself.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.S. Agarwal, R. Simon, Reconstruction of the Wigner transform of a rotationally symmetric two-dimensional beam from the Wigner transform of the beam’s one-dimensional sample. Opt. Lett. 25(18), 1379–1381 (2000)

    Google Scholar 

  2. T. Alieva, M.J. Bastiaans, Alternative representation of the linear canonical integral transform. Opt. Lett. 30, 3302–3304 (2005)

    Article  ADS  Google Scholar 

  3. T. Alieva, in Advances in Information Optics and Photonics, ICO International Trends in Optics, ed. by A.T. Friberg, R. Dändliker (SPIE Press, Bellingham, 2008). Chapter First-Order Optical Systems for Information Processing, pp. 1–26

    Google Scholar 

  4. T. Alieva, V. Lopez, F. Agullo-Lopez, L.B. Almeida, The fractional Fourier transform in optical propagation problems. J. Mod. Opt. 41(5), 1037–1044 (1994)

    Google Scholar 

  5. M.A. Alonso, Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photonics 3(4), 272–365 (2011)

    Article  Google Scholar 

  6. Y.A. Anan’ev, Y.A. Bekshaev, Theory of intensity moments for arbitrary light beams. Opt. Spectrosc. 76, 558–568 (1994)

    ADS  Google Scholar 

  7. M.J. Bastiaans, Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. J. Opt. Soc. Am. A 17(12), 2475–2480 (2000)

    Google Scholar 

  8. M.J. Bastiaans, T. Alieva, First-order optical systems with unimodular eigenvalues. J. Opt. Soc. Am. A 23(8), 1875–1883 (2006)

    Article  ADS  Google Scholar 

  9. M.J. Bastiaans, The Wigner distribution function applied to optical signals and systems. Opt. Commun. 25(1), 26–30 (1978)

    Article  ADS  Google Scholar 

  10. M. Bastiaans, Second-order moments of the Wigner distribution function in first-order optical systems. Optik 88(4), 163–168 (1991)

    Google Scholar 

  11. S. Cho, M.A. Alonso, T.G. Brown, Measurement of spatial coherence through diffraction from a transparent mask with a phase discontinuity. Opt. Lett. 37(13), 2724–2726 (2012)

    Article  ADS  Google Scholar 

  12. S.R. Deans, in The Transforms and Applications Handbook, ed. by A.D. Poularikas (CRC Press, IEEE Press, Boca Raton, 1999). Chapter Radon and Abel Transforms, pp. 8.1-8.95

    Google Scholar 

  13. D. Dragoman, Can the Wigner transform of a two-dimensional rotationally symmetric beam be fully recovered from the Wigner transform of its one-dimensional approximation? Opt. Lett. 25(5), 281–283 (2000)

    Article  ADS  Google Scholar 

  14. F. Dubois, L. Joannes, J.-C. Legros, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38(34), 7085–7094 (1999)

    Article  ADS  Google Scholar 

  15. B. Eppich, C. Gao, H. Weber, Determination of the ten second order intensity moments. Opt. Laser Tech. 30(5), 337–340 (1998)

    Article  ADS  Google Scholar 

  16. A.I. González, Y. Mejía, Nonredundant array of apertures to measure the spatial coherence in two dimensions with only one interferogram. J. Opt. Soc. Am. A 28(6), 1107–1113 (2011)

    Article  ADS  Google Scholar 

  17. J.W. Goodman, Statistical Optics, 1st edn. (Wiley, New York, 2000)

    Google Scholar 

  18. J.-P. Guigay, The ambiguity function in diffraction and isoplanatic imaging by partially coherent beams. Opt. Commun. 26(2), 136–138 (1978)

    Article  ADS  Google Scholar 

  19. C. Iaconis, I.A. Walmsley, Direct measurement of the two-point field correlation function. Opt. Lett. 21(21), 1783–1785 (1996)

    Article  ADS  Google Scholar 

  20. K. Itoh, Y. Ohtsuka, Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence. J. Opt. Soc. Am. A 3(1), 94–100 (1986)

    Article  ADS  Google Scholar 

  21. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, New York, 1988)

    MATH  Google Scholar 

  22. A.W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A 10(10), 2181–2186 (1993)

    Google Scholar 

  23. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995)

    Book  Google Scholar 

  24. D.L. Marks, R.A. Stack, D.J. Brady, D.C. Munson, R.B. Brady, Visible cone-beam tomography with a lensless interferometric camera. Science 284(5423), 2164–2166 (1999)

    Article  Google Scholar 

  25. H.M. Ozaktas, D. Mendlovic, Fourier transforms of fractional order and their optical interpretation. J. Opt. Soc. Am. A 101(34), 163–169 (1993)

    Google Scholar 

  26. D. Mendlovic, Y. Bitran, R.G. Dorsch, C. Ferreira, J. Garcia, H.M. Ozaktaz, Anamorphic fractional Fourier transform: optical implementation and applications. Appl. Opt. 34(32), 7451–7456 (1995)

    Article  ADS  Google Scholar 

  27. D. Mendlovic, R.G. Dorsch, A.W. Lohmann, Z. Zalevsky, C. Ferreira, Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display. Appl. Opt. 35(20), 3925–3929 (1996)

    Article  ADS  Google Scholar 

  28. D. Mendlovic, G. Shabtay, A.W. Lohmann\(\ast \), N. Konforti, Display of spatial coherence. Opt. Lett. 23(14), 1084–1086 (1998)

    Google Scholar 

  29. V. Namias, The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25(3), 241–265 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Nazarathy, J. Shamir, First-order optics–a canonical operator representation: lossless systems. J. Opt. Soc. 72(3), 356–364 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  31. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001)

    Google Scholar 

  32. H.M. Ozaktas, D. Mendlovic, Fractional Fourier transforms and their optical implementation. Opt. Commun. 10(9), 1875–1881 (1993)

    Google Scholar 

  33. A. Papoulis, Ambiguity function in Fourier optics. J. Opt. 64(6), 779 (1974)

    Google Scholar 

  34. A.D. Poularikas (ed.), The Transforms and Applications Handbook (CRC Press, Boca Raton, 2000)

    Google Scholar 

  35. M.G. Raymer, M. Beck, D.F. McAlister, Complex wave-field reconstruction usign phase-space tomography. Phys. Rev. Lett. 72(8), 1137–1140 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. J.C. Ricklin, F.M. Davidson, Atmospheric optical communication with a Gaussian Schell beam. J. Opt. Soc. Am. A 20(5), 856–866 (2003)

    Google Scholar 

  37. J.A. Rodrigo, T. Alieva, M.L. Calvo, Experimental implementation ofthe gyrator transform. J. Opt. Soc. Am. A 24(10), 3135–3139 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  38. J.A. Rodrigo, T. Alieva, M.L. Calvo, Gyrator transform: propertiesand applications. Opt. Express 15(5), 2190 (2007)

    Article  ADS  Google Scholar 

  39. J.A. Rodrigo, T. Alieva, M.L. Calvo, Programmable two-dimensional optical fractional Fourier processor. Opt. Express 17(7), 4976–4983 (2009)

    Google Scholar 

  40. M. Santarsiero, R. Borghi, Measuring spatial coherence by using a reversed-wavefront Young interferometer. Opt. Lett. 31(7), 861–863 (2006)

    Article  ADS  Google Scholar 

  41. J. Serna, R. Martínez-Herrero, P.M. Mejías, Parametric characterization of general partially coherent beams propagating through ABCD optical systems. J. Opt. Soc. Am. A 8(7), 1094–1098 (1991)

    Article  ADS  Google Scholar 

  42. R. Simon, K.B. Wolf, Structure of the set of paraxial optical systems. J. Opt. Soc. Am. A 17(2), 342–355 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Simon, N. Mukunda, Twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A 10(1), 95–109 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  44. K. Sundar, N. Mukunda, R. Simon, Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams. J. Opt. Soc. Am. A 12(3), 560–569 (1995)

    Article  ADS  Google Scholar 

  45. L. Tian, J. Lee, S.B. Oh, G. Barbastathis, Experimental compressive phase space tomography. Opt. Express 20(8), 8296–8308 (2012)

    Article  ADS  Google Scholar 

  46. T. Jinhong, S. Tamura, Wave field determination using tomography of the ambiguity function. Phys. Rev. E 55(2), 1946–1949 (1997)

    Article  Google Scholar 

  47. L. Waller, G. Situ, J.W. Fleischer, Phase-space measurement and coherence synthesis of optical beams. Nat. Photonics 6(7), 474–479 (2012)

    Article  ADS  Google Scholar 

  48. A. Walther, Radiometry and coherence. J. Opt. Soc. Am. 58(9), 1256–1259 (1968)

    Article  ADS  Google Scholar 

  49. T. Wang, J. Pu, Z. Chen, Propagation of partially coherent vortex beams in a turbulent atmosphere. Opt. Eng. 47, 036002 (2008)

    Article  ADS  Google Scholar 

  50. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749–759 (1932)

    Article  MathSciNet  ADS  Google Scholar 

  51. P.M. Woodward, Probability and information theory with applications to radar (Pergamon Press, New York, 1953)

    MATH  Google Scholar 

  52. J.C. Wood, D.T. Barry, Linear signal synthesis using the Radon-Wigner transform. IEEE Trans. Signal Process. 42(8), 2105–2111 (1994)

    Article  ADS  Google Scholar 

  53. F. Zernike, The concept of degree of coherence and its application to optical problems. Physica 5(8), 785–795 (1938)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Cámara .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cámara, A. (2015). Introduction. In: Optical Beam Characterization via Phase-Space Tomography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19980-1_1

Download citation

Publish with us

Policies and ethics