Advertisement

Goodness-of-Fit Methods for Nonparametric IRT Models

  • Klaas SijtsmaEmail author
  • J. Hendrik Straat
  • L. Andries van der Ark
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 140)

Abstract

This chapter has three sections. The first section introduces the unidimensionalmonotone latent variable model for data collected by means of a test or a questionnaire. The second section discusses the use of goodness-of-fit methods for statistical models, in particular, item response models such as theunidimensional monotone latent variable model. The third section discusses the use of the conditional association property for testing the goodness-of-fit of the unidimensional monotone latent variable model. It is established that conditional association is well suited for assessing the local independence assumption and a procedure is proposed for identifying locally independent sets of items. The procedure is used in a real-data analysis.

Keywords

Conditional association Goodness-of-fit methods Localindependence Robustness of conclusions when models fail Unidimensional monotone latent variable model 

References

  1. De Koning, E., Sijtsma, K., & Hamers, J. H. M. (2002). Comparing four IRT models when analyzing two tests for inductive reasoning. Applied Psychological Measurement, 26, 302–320.MathSciNetCrossRefGoogle Scholar
  2. Douglas, J., Kim, H., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23, 129–151.CrossRefGoogle Scholar
  3. Glas, C. A. W., & Verhelst, N. D. (1995). Testing the Rasch model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models. Their foundations, recent developments and applications (pp. 69–96). New York, NY: Springer.Google Scholar
  4. Gough, H. G., & Heilbrun, A. B. (1980). The Adjective Check List, manual 1980 edition. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  5. Grayson, D. A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383–392.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331–347.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 1523–1543.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Ligtvoet, R., Van der Ark, L. A., Te Marvelde, J. M., & Sijtsma, K. (2010). Investigating an invariant item ordering for polytomously scored items. Educational and Psychological Measurement, 70, 578–595.CrossRefGoogle Scholar
  9. Mokken, R. J. (1971). A theory and procedure of scale analysis. The Hague, The Netherlands/Berlin, Germany: Mouton/De Gruyter.CrossRefGoogle Scholar
  10. Mokken, R. J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417–430.CrossRefGoogle Scholar
  11. Rosenbaum, P. R. (1988). Item bundles. Psychometrika, 53, 349–359.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Rossi, N., Wang, X., & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm. Journal of Educational and Behavioral Statistics, 27, 291–317.CrossRefGoogle Scholar
  13. Sijtsma, K. (2003). Developments in practical nonparametric IRT scale analysis. In H. Yanai, A. Okada, K. Shigemasu, Y. Kano, & J. J. Meulman (Eds.), New developments in psychometrics (pp. 183–190). Tokyo, Japan: Springer.CrossRefGoogle Scholar
  14. Sijtsma, K., & Meijer, R. R. (2007). Nonparametric item response theory and related topics. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics. Vol. 26, Psychometrics (pp. 719–746). Amsterdam, The Netherlands: Elsevier.Google Scholar
  15. Sijtsma, K., Meijer, R. R., & Van der Ark, L. A. (2011). Mokken scale analysis as time goes by: An update for scaling practitioners. Personality and Individual Differences, 50, 31–37.CrossRefGoogle Scholar
  16. Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Thousand Oaks, CA: Sage.zbMATHGoogle Scholar
  17. Straat, J. H., Van der Ark, L. A., & Sijtsma, K. (2013). Comparing optimization algorithms for item selection in Mokken scale analysis. Journal of Classification, 30, 72–99.CrossRefGoogle Scholar
  18. Straat, J. H., Van der Ark, L. A., & Sijtsma, K. (2014). Using conditional association to identify locally independent item sets (Manuscript submitted for publication).Google Scholar
  19. Tijmstra, J., Hessen, D. J., Van der Heijden, P. G. M., & Sijtsma, K. (2013). Testing manifest monotonicity using order-constrained statistical inference. Psychometrika, 78, 83–97.CrossRefzbMATHGoogle Scholar
  20. Van der Ark, L. A. (2005). Stochastic ordering of the latent trait by the sum score under various polytomous IRT models. Psychometrika, 70, 283–304.MathSciNetCrossRefGoogle Scholar
  21. Van der Ark, L. A. (2007). Mokken scale analysis in R. Journal of Statistical Software, 20(11), 1–10.Google Scholar
  22. Van der Ark, L. A. (2012). New developments in Mokken scale analysis in R. Journal of Statistical Software, 48(5), 1–27.Google Scholar
  23. Van der Ark, L. A., & Bergsma, W. P. (2010). A note on stochastic ordering of the latent trait using the sum of polytomous item scores. Psychometrika, 75, 272–279.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Van der Linden, W. J., & Hambleton, R. K. (1997a). Item response theory: Brief history, common models, and extensions. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 1–28). New York, NY: Springer.CrossRefGoogle Scholar
  25. Van der Linden, W. J., & Hambleton, R. K. (Eds.). (1997b). Handbook of modern item response theory. New York, NY: Springer.zbMATHGoogle Scholar
  26. Zhang, J., & Stout, W. F. (1999). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64, 213–249.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Klaas Sijtsma
    • 1
    Email author
  • J. Hendrik Straat
    • 2
  • L. Andries van der Ark
    • 3
  1. 1.Department of Methodology and Statistics, TSBTilburg UniversityTilburgThe Netherlands
  2. 2.Cito ArnhemArnhemThe Netherlands
  3. 3.University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations