Advertisement

A Nonparametric Estimator of a Monotone Item Characteristic Curve

  • Mario LuzardoEmail author
  • Pilar Rodríguez
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 140)

Abstract

This paper presents a nonparametric approach to estimating item characteristic curves (ICCs) when they should be monotonic. First, it addresses the uni-dimensional case; before generalizing it to the multidimensional case.

This is a two-stage process. The first stage uses a nonparametric estimator of the ICC by means of nonparametric kernel regression; the second uses the above result to estimate the density function of the inverse ICC.

By integrating this density function, we obtain an isotonic estimator of the inverse ICC: symmetrized with respect to the bisector of the unit square, to obtain the ICC estimator. We also present the multidimensional case, in which we proceed on a coordinate-by-coordinate basis.

Keywords

Nonparametric Isotone Item response theory 

References

  1. Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York: Marcel Dekker.Google Scholar
  2. Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D. (1972). Statistical inference under order restrictions: the theory and application of isotonic regression. New York: Wiley.zbMATHGoogle Scholar
  3. Boomsma, A., Van Duijn, J., & Snijders, A. B. (Eds.). (2001). Essays on item response theory. New York: Springer.zbMATHGoogle Scholar
  4. Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters. Annals of Mathematical Statistics, 26, 607–616.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cheng, K. F., & Linn, P. E. (1981). Nonparametric estimation of a regression function. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57, 223–233.MathSciNetCrossRefzbMATHGoogle Scholar
  6. De Koning, E., Sijstma, K., & Hamers, J. H. M. (2002). Comparison of four IRT models when analyzing two tests for inductive reasoning. Applied Psychological Measurement, 26(3), 302–320.MathSciNetCrossRefGoogle Scholar
  7. Delecroix, M., & Thomas-Agnan, C. (2000). Spline and kernel regression under shape restrictions. In M. G. Schimek (Ed.), Smoothing and regression: Approaches, computation and application. New York: Wiley.Google Scholar
  8. Dette, H., Neumeyer, N., & Pilz, K. (2006). A simple nonparametric estimator of a strictly monotone regression function. Bernoulli, 12(3), 469–490.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Douglas, J. (1997). Joint consistency of nonparametric item characteristic curve and ability estimation. Psychometrika, 62, 7–28.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Douglas, J., & Cohen, A (2001). Nonparametric item response function estimation for assessing parametric model fit. Applied Psychological Measurement, 25, 234–243.MathSciNetCrossRefGoogle Scholar
  11. Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23, 129–151.CrossRefGoogle Scholar
  12. Ellis, J. L., & Junker, B. W. (1997). Tail-measurability in monotone latent variable models. Psychometrika, 62, 495–523.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Fischer, G. H., & Molenaar, I. (Eds.). (1995). Rasch models: Foundations, recent developments and applications. New York: Springer.zbMATHGoogle Scholar
  14. Friedman, J., & Tibshirani, R. (1984). The monotone smoothing of scatterplots. Technometrics, 26, 243–250.CrossRefGoogle Scholar
  15. Giampaglia, G. (1990). Lo scaling unidimensionale nella ricerca sociale. Napoli: Liguori Editore.Google Scholar
  16. Gijbels, I. (2005). Monotone regression. In N. Balakrishnan, S. Kotz, C. B. Read, & B. Vadakovic (Eds.), The encyclopedia of statistical sciences (2nd ed.). Hoboken/New York: Wiley.Google Scholar
  17. Grayson, D. A. (1988). Two-group classification in latent trait theory: Scores with monotone likehood ratio. Psychometrika, 53, 383–392.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Hall, P., & Huang, L. S. (2001). Nonparametric kernel regression subject to monotonicity constraints. The Annals of Statistics, 29, 624–647.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Hambleton, R., Swaminathan, H., & Rogers, H. (1991). Fundamentals of item response theory. Thousand Oaks: Sage Publications.Google Scholar
  20. Härdle, W. (1990) Applied nonparametric regression. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  21. Holland, P. W. (1990). On the sampling theory foundations of item response theory models. Psychometrika, 55, 577–601.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 1523–1543.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Junker, B. W. (1993). Conditional association, essential independence and monotone unidimensional item response models. The Annals of Statistics, 21, 1359–1378.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Junker, B. W. (2001). On the interplay between nonparametric and parametric IRT, with some thoughts about the future. In A. Boomsma, M. A. J. Van Duijn, & T. A. B. Snijders (Eds.), Essays on item response theory (pp. 247–276). New York: Springer.CrossRefGoogle Scholar
  25. Junker, B. W. & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement, 25, 211–220.MathSciNetCrossRefGoogle Scholar
  26. Kelly, C., & Rice, J. (1990). Monotone smoothing with application to dose response curves and the assessment of synergism. Biometrics, 46, 1071–1085.CrossRefGoogle Scholar
  27. Lee, Y. S. (2007). A comparison of methods for nonparametric estimation of item characteristic curves for binary items. Applied Psychological Measurement, 31(2), 121–134.MathSciNetCrossRefGoogle Scholar
  28. Lee, Y. S., Douglas, J., & Chewning, B. (2007). Techniques for developing health quality of life scales for point of service use. Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 83(2), 331–350.CrossRefGoogle Scholar
  29. Lewis, C. (1983). Bayesian inference for latent abilities. In S. B. Anderson & J. S. Helmick (Eds.), On educational testing (pp. 224–251). San Francisco: Jossey-Bass.Google Scholar
  30. Loevinger, J. (1947). A systematic approach to the construction and evaluation of tests of ability. Psychological Monographs, 61(4), 1–49.CrossRefGoogle Scholar
  31. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale: LEA.Google Scholar
  32. Luzardo, M., & Forteza, D. (2014). Modelo no paramétrico multidimensional para la estimación de los rasgos y de las curvas características del ítem mediante regresión no paramétrica con núcleos. Montevideo: CSIC.Google Scholar
  33. Mammen, E. (1991). Estimating a smooth monotone regression function. The Annals of Statistics, 19, 724–740.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Meijer, R. R., Sijtsma, K., & Smid, N. G. (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to IRT. Applied Psychological Measurement, 14, 283–298.CrossRefGoogle Scholar
  35. Mokken, R. J. (1971). A theory and procedure of scale analysis. New York/Berlin: De Gruyter.CrossRefGoogle Scholar
  36. Mokken, R.J. (1997). Nonparametric models for dichotomous responses. In Handbook of Modern Item Response Theory, ed. W. J. van der Linden and R. K. Hambleton, 351–368. New York: Springer.CrossRefGoogle Scholar
  37. Mokken, R. J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417–430.CrossRefGoogle Scholar
  38. Molenaar, I. W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows. Groningen: iecProGAMMA.Google Scholar
  39. Mukerjee, H. (1988). Monotone nonparametric regression. The Annals of Statistics, 16, 741–750.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Niemoller, K., & van Schuur, W. (1983). Stochastic models for unidimensional scaling: Mokken and Rasch. In D. McKay & N. Schofield (Eds.), Data analysis and the social sciences. London: Frances Printer Ltd.Google Scholar
  41. Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4), 425–461.CrossRefGoogle Scholar
  42. Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611–630.MathSciNetCrossRefzbMATHGoogle Scholar
  43. Ramsay, J. O. (1998). Estimating smooth monotone functions. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 60, 365–375.MathSciNetCrossRefzbMATHGoogle Scholar
  44. Ramsay, J. O. (2000). TestGraf: A computer program for nonparametric analysis of testing data. Unpublished manuscript, McGill University.Google Scholar
  45. Robertson, T., Wright, F. T. & Dykstra, R. L. (1988). Order restricted statistical inference. New York: Wiley.zbMATHGoogle Scholar
  46. Rosenbaum, P. (1984). Testing the conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49, 425–435.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Schriever, B. F. (1985). Order dependence. Unpublished Ph.D. thesis, Free University, Amsterdam.Google Scholar
  48. Sijtsma, K. (1988). Contributions to Mokken’s nonparametric item response theory. Amsterdam: Free University Press.Google Scholar
  49. Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement, 22, 3–32.MathSciNetCrossRefGoogle Scholar
  50. Sijtsma, K. (2001). Developments in measurement of persons and items by means of item response models. Behaviormetrika, 28, 65–94.CrossRefzbMATHGoogle Scholar
  51. Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Thousand Oaks: Sage Publications.zbMATHGoogle Scholar
  52. Stout, W. F. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52, 589–617.MathSciNetCrossRefzbMATHGoogle Scholar
  53. Stout, W. F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55, 293–325.MathSciNetCrossRefzbMATHGoogle Scholar
  54. Van der Linden, W., & Hambleton, R. (1997). Handbook of modern item response theory. New York: Springer.CrossRefzbMATHGoogle Scholar
  55. Wahba, G. (1990). Spline Models for observational data. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefzbMATHGoogle Scholar
  56. Wright, E. T. (1981). The asymptotic behavior of monotone regression estimates. The Annals of Statistics, 9, 443–448.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of PsychologyUniversity of the RepublicMontevideoUruguay
  2. 2.University Center East RegionalUniversity of the RepublicMaldonadoUruguay

Personalised recommendations