Skip to main content

First-Principles Electronic Transport

  • Chapter
  • First Online:
Conduction in Carbon Nanotube Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 654 Accesses

Abstract

In the previous chapter, we showed how the Hamiltonian that describes the electronic structure of a system can be computed using the density functional theory formalism to map the many-body problem onto an effective single-body problem of non-interacting electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chapter 7 presents a more detailed study of conduction between end-terminated CNTs.

  2. 2.

    See the derivation presented in Appendix A.

  3. 3.

    For principle layers containing multiple primitive lead unit cells, the band structure for a single primitive lead unit cell can be obtained by replacing the principle layer matrix blocks by equivalent primitive unit cell matrix blocks, and modifying Eq. (5.7a–c) to include contributions from non-adjacent primitive unit cells, e.g. introducing \(\varvec{h}_{02}\), \(\varvec{s}_{02}\) etc.

  4. 4.

    The calculation uses the same pseudopotentials and, as far as possible, parameter set. During the self-consistent field calculation of the ground state, the Brillouin zone was sampled at 8 equally spaced points along the periodic direction.

  5. 5.

    Plane-wave eigenstates were calculated using the Quantum Espresso package [40] using the same pseudopotentials and, as far as possible, calculation parameters. A set of 102 MLWFs were extracted from lowest 170 bands resulting in 68 MLWFs localised in the bonding region between species, 32 \(p_z\) type orbitals centred on carbon atoms, and two additional MLWFs on the nitrogen lone pairs.

  6. 6.

    We note that as a consequence of the connection between the leads across the periodic boundary, the auxiliary simulation geometry in Fig. 5.6 can only study conductance between CNTs of the same chirality. The results presented in Chap. 7 use an alternative geometry consisting of finite CNT fragments that allows for the study of conduction between CNTs of different chirality.

  7. 7.

    The variation in the real-space integral as atoms are shifted a fraction of a grid-spacing is known as the egg-box effect [42].

References

  1. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  2. C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122(8), 84119 (2005)

    Article  Google Scholar 

  3. R.A. Bell, S.M.-M. Dubois, M.C. Payne, A.A. Mostofi, Electronic transport calculations in the onetep code: implementation and applications. Comput. Phys. Commun. 193, 78 (2015)

    Google Scholar 

  4. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957)

    Article  MathSciNet  Google Scholar 

  5. R. Landauer, Electrical resistance of disordered one-dimensional lattices. Phil. Mag. 21(172), 863–867 (1970)

    Article  ADS  Google Scholar 

  6. M. Büttiker, Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)

    Article  ADS  Google Scholar 

  7. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  8. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Koentopp, C. Chang, K. Burke, R. Car, Density functional calculations of nanoscale conductance. J. Phys. Condens. Matter 20(8), 083203 (2008)

    Article  ADS  Google Scholar 

  10. A.R. Rocha, M. Rossi, A. Fazzio, A.J.R. da Silva, Designing real nanotube-based gas sensors. Phys. Rev. Lett. 100, 176803 (2008)

    Article  ADS  Google Scholar 

  11. M. Strange, C. Rostgaard, H. Häkkinen, K.S. Thygesen, Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys. Rev. B 83, 115108 (2011)

    Article  ADS  Google Scholar 

  12. C.M. Guedon, H. Valkenier, T. Markussen, K.S. Thygesen, J.C. Hummelen, S.J. van der Molen, Observation of quantum interference in molecular charge transport. Nat Nano 7, 305–309 (2012)

    Article  Google Scholar 

  13. A.R. Rocha, V.M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006)

    Article  ADS  Google Scholar 

  14. O. Hod, J.E. Peralta, G.E. Scuseria, First-principles electronic transport calculations in finite elongated systems: a divide and conquer approach. J. Chem. Phys. 125(11), 114704 (2006)

    Article  ADS  Google Scholar 

  15. M. Shelley, N. Poilvert, A.A. Mostofi, N. Marzari, Automated quantum conductance calculations using maximally-localised wannier functions. Comput. Phys. Commun. 182(10), 2174–2183 (2011)

    Google Scholar 

  16. M.B. Nardelli, J.-L. Fattebert, J. Bernholc, \(O(N)\) real-space method for ab initio quantum transport calculations: application to carbon nanotube-metal contacts. Phys. Rev. B 64, 245423 (2001)

    Article  ADS  Google Scholar 

  17. J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  18. D. Wortmann, H. Ishida, S. Blügel, Embedded Green-function approach to the ballistic electron transport through an interface. Phys. Rev. B 66, 075113 (2002)

    Article  ADS  Google Scholar 

  19. P. Havu, V. Havu, M.J. Puska, M.H. Hakala, A.S. Foster, R.M. Nieminen, Finite-element implementation for electron transport in nanostructures. J. Chem. Phys. 124(5), 054707 (2006)

    Article  ADS  Google Scholar 

  20. T. Ozaki, K. Nishio, H. Kino, Efficient implementation of the nonequilibrium Green function method for electronic transport calculations. Phys. Rev. B 81, 035116 (2010)

    Article  ADS  Google Scholar 

  21. A. Calzolari, N. Marzari, I. Souza, M. Buongiorno Nardelli, Ab initio. Phys. Rev. B 69, 035108 (2004)

    Google Scholar 

  22. K. Thygesen, K. Jacobsen, Molecular transport calculations with wannier functions. Chem. Phys. 319(1–3), 111–125 (2005)

    Article  ADS  Google Scholar 

  23. A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Wannier90: a tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 178(9), 685–699 (2008)

    Article  MATH  ADS  Google Scholar 

  24. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012)

    Article  ADS  Google Scholar 

  25. J. Li, T. Jayasekera, V. Meunier, J.W. Mintmire, Electronic transport of silicon nanowires with surface defects. Int. J. Quantum Chem. 109(15), 3705–3710 (2009)

    Article  ADS  Google Scholar 

  26. C.-K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Diéguez, M.C. Payne, Nonorthogonal generalized wannier function pseudopotential plane-wave method. Phys. Rev. B 66, 035119 (2002)

    Article  ADS  Google Scholar 

  27. A.A. Mostofi, C.-K. Skylaris, P.D. Haynes, M.C. Payne, Total-energy calculations on a real space grid with localized functions and a plane-wave basis. Comput. Phys. Commun. 147(3), 788–802 (2002)

    Article  MATH  ADS  Google Scholar 

  28. M.P.L. Sancho, J.M.L. Sancho, J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F Metal Phys. 14(5), 1205 (1984)

    Article  ADS  Google Scholar 

  29. E.M. Godfrin, A method to compute the inverse of an \(n\)-block tridiagonal quasi-hermitian matrix. J. Phys. Condens. Matter 3(40), 7843 (1991)

    Article  ADS  Google Scholar 

  30. D.E. Petersen, H.H.B. Sørensen, P.C. Hansen, S. Skelboe, K. Stokbro, Block tridiagonal matrix inversion and fast transmission calculations. J. Comput. Phys. 227(6), 3174–3190 (2008)

    Google Scholar 

  31. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd edn. (Society for Industrial and Applied Mathematics, Philadelphia, 1999)

    Google Scholar 

  32. M. Paulsson, M. Brandbyge, Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 76, 115117 (2007)

    Article  ADS  Google Scholar 

  33. D.S. Fisher, P.A. Lee, Relation between conductivity and transmission matrix. Phys. Rev. B 23, 6851–6854 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLAPACK Users’ Guide (Society for Industrial and Applied Mathematics, Philadelphia, 1997)

    Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  36. L. Kleinman, D.M. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48(20), 1425–1428 (1982)

    Article  ADS  Google Scholar 

  37. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie 220(5-6-2005), 567–570 (2005)

    Google Scholar 

  38. N. Marzari, D. Vanderbilt, Maximally localized generalized wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997)

    Article  ADS  Google Scholar 

  39. I. Souza, N. Marzari, D. Vanderbilt, Maximally localized wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001)

    Article  ADS  Google Scholar 

  40. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal, Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  41. L.E. Ratcliff, N.D.M. Hine, P.D. Haynes, Calculating optical absorption spectra for large systems using linear-scaling density functional theory. Phys. Rev. B 84, 165131 (2011)

    Article  ADS  Google Scholar 

  42. E. Anglada, J.M. Soler, Filtering a distribution simultaneously in real and fourier space. Phys. Rev. B 73, 115122 (2006)

    Article  ADS  Google Scholar 

  43. I. Rungger, S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008)

    Article  ADS  Google Scholar 

  44. C. Møller, M.S. Plesset, Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Bell .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bell, R.A. (2015). First-Principles Electronic Transport. In: Conduction in Carbon Nanotube Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19965-8_5

Download citation

Publish with us

Policies and ethics