Skip to main content

Mesoscopic Current and Ballistic Conductance

  • Chapter
  • First Online:
  • 708 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we introduce the methodology used throughout this dissertation for computing the conductance of carbon nanotubes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this dissertation, we will focus only on current flow in the steady-state at zero frequency.

  2. 2.

    The conductance also behaves classically when the coherence length is very short compared to any other length scale. Due to a rapid loss of phase coherence, the effect of coherent interference at each scattering event can be neglected and Ohm’s law can be recovered [4].

  3. 3.

    We note for completeness that a recent study [6] has questioned the observation of ballistic conductance as reported in Ref. [3] (Fig. 3.1) and similar studies. It has been suggested that nanoscale contacts directly between the probe and mercury may have been mistaken for ballistic-conductor CNTs. Nevertheless, extremely large electron scattering lengths have been inferred in CNTs using independent methods as shown in Table 3.1.

  4. 4.

    This was in fact the picture first proposed by Drude in 1900, which pre-dates quantum theory [33, 34].

  5. 5.

    The lead region that connects the reservoirs to the device is assumed to do so adiabatically, and therefore does not introduce any additional scattering. Scattering at this location is referred to as contact resistance [4]. In addition, we have assumed time-reversal symmetry so that the transmission is not dependent on the direction of travel of the electrons. Such an assumption is broken in the presence of a magnetic field [4].

  6. 6.

    The Fermi energy may be modified through a gate voltage or through doping; the effect of charge doping in CNTs due to water is the focus of Chap. 8.

References

  1. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988)

    Article  ADS  Google Scholar 

  2. N. Agraït, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377(2), 81–279 (2003)

    Article  ADS  Google Scholar 

  3. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)

    Google Scholar 

  4. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  5. Y. Zhou, S. Sreekala, P.M. Ajayan, S.K. Nayak, Resistance of copper nanowires and comparison with carbon nanotube bundles for interconnect applications using first principles calculations. J. Phys.: Condens. Matter 20(9), 095209 (2008)

    ADS  Google Scholar 

  6. M. Kobylko, M. Kociak, Y. Sato, K. Urita, A.M. Bonnot, A. Kasumov, Y. Kasumov, K. Suenaga, C. Colliex, Ballistic- and quantum-conductor carbon nanotubes: a reference experiment put to the test. Phys. Rev. B 90, 195431 (2014)

    Article  ADS  Google Scholar 

  7. T. Ando, T. Nakanishi, Impurity scattering in carbon nanotubes—absence of back scattering. J. Phys. Soc. Jpn. 67(5), 1704–1713 (1998)

    Article  ADS  Google Scholar 

  8. T. Ando, T. Nakanishi, R. Saito, Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 67(8), 2857–2862 (1998)

    Article  ADS  Google Scholar 

  9. S. Roche, G. Dresselhaus, M.S. Dresselhaus, R. Saito, Aharonov-bohm spectral features and coherence lengths in carbon nanotubes. Phys. Rev. B 62, 16092–16099 (2000)

    Article  ADS  Google Scholar 

  10. Y. Fan, B.R. Goldsmith, P.G. Collins, Identifying and counting point defects in carbon nanotubes. Nat. Mater. 4, 906–911 (2005)

    Article  ADS  Google Scholar 

  11. C.L. Kane, E.J. Mele, R.S. Lee, J.E. Fischer, P. Petit, H. Dai, A. Thess, R.E. Smalley, A.R.M. Verschueren, S.J. Tans, C. Dekker, Temperature-dependent resistivity of single-wall carbon nanotubes. Europhys. Lett. 41(6), 683 (1998)

    Article  ADS  Google Scholar 

  12. H. Suzuura, T. Ando, Phonons and electron-phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002)

    Article  ADS  Google Scholar 

  13. J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4(3), 517–520 (2004)

    Article  ADS  Google Scholar 

  14. J. Appenzeller, R. Martel, P. Avouris, H. Stahl, B. Lengeler, Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes. Appl. Phys. Lett. 78(21), 3313–3315 (2001)

    Article  ADS  Google Scholar 

  15. C.L. Kane, E.J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997)

    Article  ADS  Google Scholar 

  16. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)

    Article  ADS  Google Scholar 

  17. H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, H. Dai, Integrated nanotube circuits: controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75(5), 627–629 (1999)

    Article  ADS  Google Scholar 

  18. P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, S.G. Louie, Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999)

    Article  ADS  Google Scholar 

  19. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004)

    Article  ADS  Google Scholar 

  20. B. Stojetz, C. Hagen, C. Hendlmeier, E. Ljubović, L. Forró, C. Strunk, Ensemble averaging of conductance fluctuations in multiwall carbon nanotubes. New J. Phys. 6(1), 27 (2004)

    Article  ADS  Google Scholar 

  21. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  ADS  Google Scholar 

  22. K. Liu, P. Avouris, R. Martel, W.K. Hsu, Electrical transport in doped multiwalled carbon nanotubes. Phys. Rev. B 63, 161404 (2001)

    Article  ADS  Google Scholar 

  23. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Single-electron transport in ropes of carbon nanotubes. Science 275(5308), 1922–1925 (1997)

    Article  Google Scholar 

  24. R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  25. D.A. Greenwood, The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71(4), 585 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957)

    Article  MathSciNet  Google Scholar 

  27. R. Landauer, Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21(172), 863–867 (1970)

    Article  ADS  Google Scholar 

  28. M. Büttiker, Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)

    Article  ADS  Google Scholar 

  29. S.D. Stone, A. Szafer, What is measured when you measure a resistance?—The Landauer formula revisited. IBM J. Res. Dev. 32, 384–413 (1988)

    Article  Google Scholar 

  30. Y. Meir, N.S. Wingreen, Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992)

    Article  ADS  Google Scholar 

  31. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, Direct calculation of the tunneling current. J. Phys. C Solid State Phys. 4(8), 916 (1971)

    Article  ADS  Google Scholar 

  32. L. Keldysh, Diagram technique for nonequilibrium processes. Sov. Phys. J. Exp. Theor. Phys. 20, 1018–1026 (1965)

    MathSciNet  Google Scholar 

  33. P. Drude, Zur elektronentheorie der metalle. Annalen der Physik 306(3), 566–613 (1900)

    Article  ADS  Google Scholar 

  34. N. Ashcroft, N. Mermin, Solid state physics. Science: Physics (Brooks/Cole, Cengage Learning, 1976)

    Google Scholar 

  35. D.S. Fisher, P.A. Lee, Relation between conductivity and transmission matrix. Phys. Rev. B 23, 6851–6854 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Di Ventra, Electrical Transport in Nanoscale Systems (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  37. S.-I. Tomonaga, Remarks on Bloch’s method of sound waves applied to many-fermion problems. Progr. Theor. Phys. 5(4), 544–569 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  38. J.M. Luttinger, An exactly soluble model of a many-Fermion system. J. Math. Phys. 4, 1154–1162 (1963)

    Google Scholar 

  39. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999)

    Article  ADS  Google Scholar 

  40. H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, T. Narimura, M. Higashiguchi, K. Shimada, H. Namatame, M. Taniguchi, Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003)

    Google Scholar 

  41. F.D.M. Haldane, Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C: Solid State Phys, 14(19), 2585 (1981)

    Article  ADS  Google Scholar 

  42. R. Egger, A. Bachtold, M. Fuhrer, M. Bockrath, D. Cobden, P. McEuen, Luttinger liquid behavior in metallic carbon nanotubes, in ed. by R. Haug, H. Schoeller Interacting Electrons in Nanostructures. Lecture Notes in Physics, vol. 579 (Springer, Berlin, 2001), pp. 125–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Bell .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bell, R.A. (2015). Mesoscopic Current and Ballistic Conductance. In: Conduction in Carbon Nanotube Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19965-8_3

Download citation

Publish with us

Policies and ethics