Skip to main content

The Structural and Electronic Properties of Carbon Nanotubes

  • Chapter
  • First Online:
Book cover Conduction in Carbon Nanotube Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 683 Accesses

Abstract

Carbon has a rich and varied chemistry, forming compounds with almost every other known element of the periodic table. It is also the compounds that it forms with itself, however, that are of great technological interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that double-walled CNTs are often referred to as multi-walled CNTs.

  2. 2.

    Specific conductivity, defined as the conductivity normalised by the density, is used to allow comparison of CNT networks with different morphologies and densities.

  3. 3.

    This estimate is obtained by assuming that conductance within a CNT can be considered ballistic over the electron mean free path of carbon nanotubes \(\ell _{\mathrm {m.f.p.}}\sim 1~\mathrm {\mu m}\) (see Chap. 3 for a discussion of ballistic conductance and mean free paths). This defines a conductivity of \(\sigma \sim G\ell _{\mathrm {m.f.p.}}/A\) where the conductance G is of order the quantum conductance \(G_0=7.75\times 10^{-5}~\mathrm {S}\) and A is the CNT cross-sectional area. Assuming that each CNT within the network contributes independently to the conductivity, the specific conductivity of the network as a whole is equal to the specific conductivity of an individual CNT. The mass density of an individual CNT is obtained as \(\rho =N m_C / A d\) where d is the unit length of the tube, \(m_C\sim 10^{-26}~\mathrm {kg}\) is the atomic mass of a carbon atom and \(N=2\pi D d / 3\sqrt{3} a_{CC}^2\) is the number of carbon atoms per unit length d with \(D\sim 1~\mathrm {nm}\) the CNT diameter and \(a_{CC}=1.4\,{\AA }\) the carbon-carbon bond length. The resulting expression for the specific conductivity is

    $$\begin{aligned} \sigma ^{\prime } = \frac{\sigma }{\rho } = \frac{3\sqrt{3}G_0\ell _\mathrm{m.f.p.}a_{CC}^2}{2\pi D m_C}. \end{aligned}$$
    (2.1)
  4. 4.

    For clarity, we omit the normalisation of the wavefunction.

  5. 5.

    We assume the graphene lattice vectors to be

    $$\begin{aligned} \mathbf {a}_1 = (a_{1,x},a_{1,y}) = \left( \frac{\sqrt{3}}{2}, \frac{1}{2}\right) a, \quad \quad \mathbf {a}_2 = \left( \frac{\sqrt{3}}{2},-\frac{1}{2}\right) a. \end{aligned}$$
  6. 6.

    Placed in each spin channel.

  7. 7.

    These points are equivalent under time-reversal symmetry.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Google Scholar 

  3. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C\(_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  ADS  Google Scholar 

  4. R. Saito, G. Dresselhaus, S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Google Scholar 

  5. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  ADS  Google Scholar 

  6. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)

    Article  ADS  Google Scholar 

  7. C. Liao, K. Chen, W. Wu, L. Chen, In situ transmission electron microscope observations of electromigration in copper lines at room temperature. Appl. Phys. Lett. 87, 141903 (2005)

    Article  ADS  Google Scholar 

  8. D. Dew-Hughes, The critical current of superconductors: an historical review. Low Temp. Phys. 27(9), 713–722 (2001)

    Article  ADS  Google Scholar 

  9. H. Li, K. Banerjee, High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices 56, 2202–2214 (2009)

    Article  ADS  Google Scholar 

  10. M. Meyyappan (ed.), Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, 2004)

    Google Scholar 

  11. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8), 2581–2602 (2011)

    Article  Google Scholar 

  12. J.-C. Charlier, X. Blase, S. Roche, Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007)

    Article  ADS  Google Scholar 

  13. R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 7(7), 6156–6161 (2013)

    Article  Google Scholar 

  14. J.-F. Colomer, L. Henrard, G. Van Tendeloo, A. Lucas, P. Lambin, Study of the packing of double-walled carbon nanotubes into bundles by transmission electron microscopy and electron diffraction. J. Mater. Chem. 14, 603–606 (2004)

    Article  Google Scholar 

  15. M. Motta, A. Moisala, I.A. Kinloch, A.H. Windle, High performance fibres from ‘dog bone’ carbon nanotubes. Adv. Mater. 19(21), 3721–3726 (2007)

    Article  Google Scholar 

  16. R.M. Sundaram, K.K.K. Koziol, A.H. Windle, Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv. Mater. 23(43), 5064–5068 (2011)

    Article  Google Scholar 

  17. N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, M. Pasquali, Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013)

    Article  ADS  Google Scholar 

  18. N. Behabtu, M.J. Green, M. Pasquali, Carbon nanotube-based neat fibers. Nano Today 3(5–6), 24–34 (2008)

    Article  Google Scholar 

  19. Y. Zhao, J. Wei, R. Vajtai, P.M. Ajayan, E.V. Barrera, Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 1 (2011)

    Google Scholar 

  20. F. Bloch, Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik 52(7–8), 555–600 (1929)

    Article  ADS  Google Scholar 

  21. J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)

    Article  ADS  Google Scholar 

  22. H. Yorikawa, S. Muramatsu, Energy gaps of semiconducting nanotubules. Phys. Rev. B 52, 2723–2727 (1995)

    Article  ADS  Google Scholar 

  23. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett. 72, 1878–1881 (1994)

    Article  ADS  Google Scholar 

  24. H.J. Liu, C.T. Chan, Properties of 4 Å carbon nanotubes from first-principles calculations. Phys. Rev. B 66, 115416 (2002)

    Google Scholar 

  25. J. Kürti, V. Zólyomi, M. Kertesz, G. Sun, R. Baughman, H. Kuzmany, Individualities and average behavior in the physical properties of small diameter single-walled carbon nanotubes. Carbon 42(5–6), 971–978 European Materials Research Society 2003 (Symposium B, Advanced Multifunctional Nanocarbon Materials and Nanosystems, 2004))

    Google Scholar 

  26. V. Zólyomi, J. Kürti, First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes. Phys. Rev. B 70, 085403 (2004)

    Article  ADS  Google Scholar 

  27. C.L. Kane, E.J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997)

    Article  ADS  Google Scholar 

  28. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002)

    Article  ADS  Google Scholar 

  29. P. Delaney, H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen, Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature 391, 466–468 (1998)

    Article  ADS  Google Scholar 

  30. M. Ouyang, J.-L. Huang, C.L. Cheung, C.M. Lieber, Energy gaps in “metallic” single-walled carbon nanotubes. Science 292(5517), 702–705 (2001)

    Article  ADS  Google Scholar 

  31. J.-C. Charlier, X. Gonze, J.-P. Michenaud, First-principles study of carbon nanotube solid-state packings. Europhys. Lett. 29(1), 43 (1995)

    Article  ADS  Google Scholar 

  32. A.A. Maarouf, C.L. Kane, E.J. Mele, Electronic structure of carbon nanotube ropes. Phys. Rev. B 61, 11156–11165 (2000)

    Article  ADS  Google Scholar 

  33. P. Lambin, V. Meunier, A. Rubio, Electronic structure of polychiral carbon nanotubes. Phys. Rev. B 62, 5129–5135 (2000)

    Article  ADS  Google Scholar 

  34. S. Sanvito, Y.-K. Kwon, D. Tománek, C.J. Lambert, Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 84, 1974–1977 (2000)

    Article  ADS  Google Scholar 

  35. Y.-K. Kwon, S. Saito, D. Tománek, Effect of intertube coupling on the electronic structure of carbon nanotube ropes. Phys. Rev. B 58, R13314–R13317 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Bell .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bell, R.A. (2015). The Structural and Electronic Properties of Carbon Nanotubes. In: Conduction in Carbon Nanotube Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19965-8_2

Download citation

Publish with us

Policies and ethics