Skip to main content

High-Frequency Sound Generated by Sound-Aerofoil Interaction in Subsonic Uniform Flow

  • Chapter
  • First Online:
Asymptotic Approximations for the Sound Generated by Aerofoils in Unsteady Subsonic Flows

Part of the book series: Springer Theses ((Springer Theses))

  • 421 Accesses

Abstract

In this chapter we adapt the analytically-based procedure of (Myers and Kerschen 1995, 1997) and Tsai (1992) to study the sound-aerofoil interaction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This method is repeated in detail in the first appendix of the next chapter. We have chosen to include full details of the method for that solution because of the errors found in Tsai (1992).

  2. 2.

    Again, full details of this method will be covered in the first appendix of the next chapter because of errors in Tsai’s results.

References

  • Abbott, I. H., & Von Doenhoff, A. E. (1959). Theory of wing sections, including a summary of airfoil data. New York: Courier Dover Publications.

    Google Scholar 

  • Abramowitz, M., & stegun, I. A. (1964). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York: Courier Dover Publications.

    MATH  Google Scholar 

  • Ayton, L. J., & Peake, N. (2013). On high-frequency noise scattering by aerofoils in flow. Journal of Fluid Mechanics, 734, 144–182.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bleistein, N., & Handelsman, R. A. (1975). Asymptotic expansions of integrals. New York: Ardent Media.

    MATH  Google Scholar 

  • Crighton, D. G. (1985). The Kutta condition in unsteady flow. Annual Review of Fluid Mechanics, 17, 411–445.

    Article  ADS  Google Scholar 

  • Ffowcs Williams, J. E., & Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society A, 264, 321–342.

    Article  MATH  ADS  Google Scholar 

  • Goldstein, M. E. (1978). Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. Journal of Fluid Mechanics, 89, 433–468.

    Article  MATH  ADS  Google Scholar 

  • Gradshteyn, I. S., & Ryzhik, I. M. (1980). Table of integrals, series, and products (6th ed.). New York: Academic Press.

    MATH  Google Scholar 

  • Howe, M. S. (1978). A review of the theory of trailing edge noise. Contractor Report Jul Dec 1977 (Vol. 61, pp. 437–465). Cambridge MA: Bolt Beranek and Newman Inc.

    Google Scholar 

  • Hunt, J. C. R. (1973). A theory of turbulent flow round two-dimensional bluff bodies. Journal of Fluid Mechanics, 61, 625–706.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Jones, D. S. (1966). Generalised functions. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Jones, D. S. (1986). Acoustic and electromagnetic waves. Oxford: Clarendon Press.

    Google Scholar 

  • Kerschen, E. J., & Balsa, T. F. (1981). Transformation of the equation governing disturbances of a two-dimensional compressible flow. AIAA Journal, 19, 1367–1370.

    Article  MATH  ADS  Google Scholar 

  • Kerschen, E. J., & Myers, M. R. (1987). Perfect gas effects in compressible rapid distortion theory. AIAA Journal, 25, 504–507.

    Article  ADS  Google Scholar 

  • Myers, M. R. (1987). Effect of airfoil mean loading on high-frequency gust interaction noise (PhD thesis, University of Arizona).

    Google Scholar 

  • Myers, M. R., & Kerschen, E. J. (1995). Influence of incidence angle on sound generation by airfoils interacting with high-frequency gusts. Journal of Fluid Mechanics, 292, 271–304.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Myers, M. R., & Kerschen, E. J. (1997). Influence of camber on sound generation by airfoils interacting with high-frequency gusts. Journal of Fluid Mechanics, 353, 221–259.

    Article  MATH  ADS  Google Scholar 

  • Noble, B. (1998). Methods based on the Wiener-Hopf technique for the solution of partial differential equations. New York: Chelsea Publications.

    Google Scholar 

  • Peake, N., & Kerschen, E. J. (2004). Influence of mean loading on noise generated by the interaction of gusts with a cascade: Downstream radiation. Journal of Fluid Mechanics, 515, 99–133.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Thwaites, B. (1960). Incompressible aerodynamics: An account of the theory and observation of the steady flow of incompressible fluid past aerofoils, wings, and other bodies. New York: Dover Publications.

    MATH  Google Scholar 

  • Tsai, C. -T. (1992). Effect of airfoil thickness on high-frequency gust interaction noise (PhD thesis, University of Arizona).

    Google Scholar 

  • Van der Waerden, B. L. (1952). On the method of saddle points. Applied Scientific Research, Section B, 2, 33–45.

    Article  Google Scholar 

  • Van Dyke, M. (1975). Perturbation methods in fluid mechanics. Stanford: Parabolic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorna Ayton .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ayton, L. (2015). High-Frequency Sound Generated by Sound-Aerofoil Interaction in Subsonic Uniform Flow. In: Asymptotic Approximations for the Sound Generated by Aerofoils in Unsteady Subsonic Flows. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19959-7_2

Download citation

Publish with us

Policies and ethics