Skip to main content

Introduction to Physics at the High-Energy Frontier

  • Chapter
  • First Online:
Search for Supersymmetry in Hadronic Final States

Part of the book series: Springer Theses ((Springer Theses))

  • 388 Accesses

Abstract

Particle physics is the research field among the physics disciplines that explores the fundamental constituents of the universe. The theory describing the properties of those constituents is known as the standard model of particle physics (SM). Within the framework of the SM, three fundamental forces between particles are described: the strong, weak, and electromagnetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, that in these papers quarks were not part of the model. The existence of quarks was suggested by [1618].

  2. 2.

    The mentioned references introduced the gluon or the SU(3) algebra leading to the color charge. Many more people contributed to the development of QCD.

  3. 3.

    Recent results of the LHCb experiment show the existence of a state not belonging to these two classes [27].

  4. 4.

    The quark masses are omitted as they are already explained in Sect. 1.1.1.

  5. 5.

    The value has been calculated in the \(\overline{MS}\) scheme with six quark flavors. Using only five quark flavors, the value is \(\Lambda _\mathrm {QCD} = 214\pm 7\text { MeV}\).

  6. 6.

    This number could be increased, for example by introducing mixing angles in the leptonic sector.

References

  1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). doi:10.1016/j.physletb.2012.08.020, 1207.7214

  2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). doi:10.1016/j.physletb.2012.08.021. arXiv:1207.7235

  3. CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \(\sqrt{s}\) = 7 and 8 TeV. JHEP 06, 081 (2013). doi:10.1007/JHEP06(2013)081. arXiv:1303.4571

  4. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531 (1963). doi:10.1103/PhysRevLett.10.531

    Article  ADS  Google Scholar 

  5. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973). doi:10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  6. V. Chiochia, G. Dissertori, T. Gehrmann, Phenomenology of particle physics 1. Lecture notes (2009)

    Google Scholar 

  7. V. Chiochia, G. Dissertori, T. Gehrmann, Phenomenology of particle physics 2. Lecture notes (2010)

    Google Scholar 

  8. F. Halzen, A.D. Martin, Quarks and Leptons—An Introductory Course in Modern Particle Physics (Wiley, 1984)

    Google Scholar 

  9. I. Aitchison, A. Hey, Gauge Theories in Particle Physics: A Practical Introduction, (Institute of Physics Publishing, 1989)

    Google Scholar 

  10. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Advanced Book Program, 1995)

    Google Scholar 

  11. G. Dissertori, I. Knowles, M. Schmelling, Quantum Chromodynamics—High Energy Experiments and Theory (Oxford university press, 2009)

    Google Scholar 

  12. S. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579 (1961). doi:10.1016/0029-5582(61)90469-2

    Article  Google Scholar 

  13. A. Salam, J.C. Ward, Electromagnetic and weak interactions. Phys. Lett. 13, 168 (1964). doi:10.1016/0031-9163(64)90711-5

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. A. Salam, Weak and electromagnetic interactions. Conf. Proc. C 680519, 367 (1968)

    Google Scholar 

  15. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264 (1967). doi:10.1103/PhysRevLett.19.1264

    Article  ADS  Google Scholar 

  16. M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214 (1964). doi:10.1016/S0031-9163(64)92001-3

    Article  ADS  Google Scholar 

  17. G. Zweig, An \({\rm {SU}}_3\) model for strong interaction symmetry and its breaking. Version 1, CERN TH-401 (1964)

    Google Scholar 

  18. G. Zweig, An \({\rm {SU}}_3\) model for strong interaction symmetry and its breaking. Version 2, CERN TH-412 (1964) in: Developments in the Quark Theory of Hadrons, ed. by D.B. Lichtenberg, S.P. Rosen (Hadronic press, 1980)

    Google Scholar 

  19. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964). doi:10.1103/PhysRevLett.13.321

    Article  MathSciNet  ADS  Google Scholar 

  20. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964). doi:10.1016/0031-9163(64)91136-9

    Article  ADS  Google Scholar 

  21. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964). doi:10.1103/PhysRevLett.13.508

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Goldstone, Field theories with superconductor solutions. Nuovo Cimento 19, 154 (1961). doi:10.1007/BF02812722

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965 (1962). doi:10.1103/PhysRev.127.965

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067 (1962). doi:10.1103/PhysRev.125.1067

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. M. Han, Y. Nambu, Three triplet model with double SU(3) symmetry. Phys. Rev. 139, B1006 (1965). doi:10.1103/PhysRev.139.B1006

    Article  MathSciNet  ADS  Google Scholar 

  26. O. Greenberg, Spin and unitary spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett. 13, 598 (1964). doi:10.1103/PhysRevLett.13.598

    Article  ADS  Google Scholar 

  27. LHCb Collaboration, Observation of the resonant character of the \(Z(4430)^-\) state, Phys. Rev. Lett. 112, 222002 (2014). doi:10.1103/PhysRevLett.112.222002. arXiv:1404.1903. See also BELLE collaboration, Phys. Rev. Lett. 100, 142001 (2008)

  28. E.C.G. Stückelberg, A. Petermann, Normalization of constants in the quanta theory. Helvetica Physica Acta 26, 499 (1953)

    MATH  MathSciNet  Google Scholar 

  29. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973). doi:10.1103/PhysRevLett.30.1346

    Article  ADS  Google Scholar 

  30. D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343 (1973). doi:10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  31. Particle Data Group Collaboration, Review of particle physics. Chin. Phys. C 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001

  32. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977). doi:10.1016/0550-3213(77)90384-4

    Article  ADS  Google Scholar 

  33. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and \(e^+ e^-\) annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  34. V. Gribov, L. Lipatov, Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  35. J. Gao et al., The CT10 NNLO global analysis of QCD. Phys. Rev. D 89, 033009 (2014). doi:10.1103/PhysRevD.89.033009. arXiv:1302.6246

    Article  ADS  Google Scholar 

  36. A. Martin et al., Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002

    Article  ADS  Google Scholar 

  37. R.K. Ellis, W.J. Stirling, B. Webber, QCD and Collider Physics, Cambridge Monographs on Particle Physics, Nuclear Physics Cosmology, vol.8 1996. (Cambridge University Press, 2003)

    Google Scholar 

  38. A. Schaelicke et al., Event generator for particle production in high-energy collisions. Prog. Part. Nucl. Phys. 53, 329 (2004). doi:10.1016/j.ppnp.2004.02.031. arXiv:hep-ph/0311270

    Article  ADS  Google Scholar 

  39. B. Andersson, G. Gustafson, B. Söderberg, A general model for jet fragmentation. Z. Phys. C 20, 317 (1983). doi:10.1007/BF01407824

    Article  ADS  Google Scholar 

  40. B. Andersson et al., Parton fragmentation and string dynamics. Phys. Rept. 97, 31 (1983). doi:10.1016/0370-1573(83)90080-7

    Article  ADS  Google Scholar 

  41. T. Sjöstrand, Jet fragmentation of nearby partons. Nucl. Phys. B 248, 469 (1984). doi:10.1016/0550-3213(84)90607-2

    Article  ADS  Google Scholar 

  42. B. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492 (1984). doi:10.1016/0550-3213(84)90333-X

    Article  ADS  Google Scholar 

  43. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak, SLD Electroweak, SLD Heavy Flavour Collaboration, Precision electroweak measurements on the \(Z\) resonance, Phys. Rept. 427 (2006) 257, doi:10.1016/j.physrep.2005.12.006, arXiv:hep-ex/0509008

  44. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, Electroweak measurements in electron-positron collisions at w-boson-pair energies at LEP. Phys. Rep. 532 (2013) 119, doi:10.1016/j.physrep.2013.07.004, arXiv:1302.3415. Latest plots taken from http://lepewwg.web.cern.ch/LEPEWWG/plots/lep2_2013/

  45. CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \(\sqrt{s}\) = 7 TeV, arXiv:1410.6765. Submitted to EJPC

  46. ATLAS Collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. Phys. Lett. B 726 (2013). 88, doi:10.1016/j.physletb.2013.08.010, arXiv:1307.1427

  47. http://aliceinfo.cern.ch/ArtSubmission/publications, https://twiki.cern.ch/twiki/bin/view/AtlasPublic, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults, http://lhcbproject.web.cern.ch/lhcbproject/CDS/cgi-bin/index.php

  48. Super-Kamiokande Collaboration, Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562 (1998). doi:10.1103/PhysRevLett.81.1562. arXiv:hep-ex/9807003

  49. SNO Collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the sudbury neutrino observatory. Phys. Rev. Lett. 89, 011301 (2002). doi:10.1103/PhysRevLett.89.011301. arXiv:nucl-ex/0204008

  50. MINOS Collaboration, Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam. Phys. Rev. Lett. 97, 191801 (2006).doi:10.1103/PhysRevLett.97.191801, arXiv:hep-ex/0607088

  51. K2K Collaboration, Measurement of neutrino oscillation by the K2K experiment. Phys. Rev. D 74, 072003 (2006). doi:10.1103/PhysRevD.74.072003, arXiv:hep-ex/0606032

  52. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6, 110 (1933). doi:10.1007/s10714-008-0707-4. doi-link redirects to republication in Gen. Relativ. Gravitat. 41(207) 2009, an English translation

  53. Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (2014) doi:10.1051/0004-6361/201321591, arXiv:1303.5076

  54. C.G. Callan Jr, R.F. Dashen, D.J. Gross, The structure of the gauge theory vacuum. Phys. Lett. B 63, 334 (1976). doi:10.1016/0370-2693(76)90277-X

    Article  ADS  Google Scholar 

  55. R. Jackiw, C. Rebbi, Vacuum periodicity in a yang-mills quantum theory. Phys. Rev. Lett. 37, 172 (1976). doi:10.1103/PhysRevLett.37.172

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannsjörg Artur Weber .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weber, H.A. (2015). Introduction to Physics at the High-Energy Frontier. In: Search for Supersymmetry in Hadronic Final States. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19956-6_1

Download citation

Publish with us

Policies and ethics