Skip to main content

Multiple Virtual Human Interactions

  • Chapter
  • First Online:
Context Aware Human-Robot and Human-Agent Interaction

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Autonomous virtual humans need to be able to interact between each others in virtual environments. These interactions are essentials for the generation of realistic behaviours from virtual humans. This chapter presents a review about interactions between real and multiple virtual humans, as well as between themselves. After presenting the problematics and approaches raised by virtual humans interactions, different methods for simulating such interactions are discussed. Interactions between real and multiple virtual humans are presented first with a focus on virtual assistants and social phobia examples. Interactions between virtual humans are then adressed, particularly gaze attention of other characters and navigation interactions between multiple virtual humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111:1036–1060

    Google Scholar 

  2. Aw A, Klar A, Materne T, Rascle M (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J Appl Math 63:259–278

    Article  MATH  MathSciNet  Google Scholar 

  3. Braun A, Musse SR, de Oliveira LPL, Bodmann BEJ (2003) Modeling individual behaviors in crowd simulation. In: Computer animation and social agents, international conference on 2003, p 0:143

    Google Scholar 

  4. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A Stat Mech Appl 295:507–525

    Article  MATH  Google Scholar 

  5. Cavazza M, Charles F, Mead SJ (2002) Character-based interactive storytelling. IEEE Intell Syst 17(4):17–24

    Google Scholar 

  6. Conde T, Thalmann D (2006) An integrated perception for autonomous virtual agents: active and predictive perception. Comput Anim Virtual Worlds 17:457–468

    Google Scholar 

  7. Daamen W, Hoogendoorn SP (2003) Qualitative results from pedestrian laboratory experiments. In: Pedestrian and evacuation dynamics, pp 121–132

    Google Scholar 

  8. Fajen BR (2007) Affordance-based control of visually guided action. Ecol Psychol 19:383–410

    Google Scholar 

  9. Fajen BR, Warren WH, Temizer S, Kaelbling LP (2003) A dynamical model of visually-guided steering, obstacle avoidance, and route selection. Int J Comput Vis 54(1–3):13–34

    Google Scholar 

  10. Golas A, Narain R, Lin M (2013) Hybrid long-range collision avoidance for crowd simulation. In: Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and games, pp 29–36

    Google Scholar 

  11. Grillon H, Thalmann D (2009) Simulating gaze attention behaviors for crowds. Comput Anim Virtual Worlds 20:111–119

    Google Scholar 

  12. Grillon H, Riquier F, Herbelin B, Thalmann D (2006) Virtual reality as a therapeutic tool in the confines of social anxiety disorder treatment. Int J Disabil Hum Dev 5:243–250

    Google Scholar 

  13. Guy SJ, Kim S, Lin MC, Manocha D (2011) Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 43–52

    Google Scholar 

  14. He L, van den Berg J (2013) Meso-scale planning for multi-agent navigation. In: IEEE international conference on robotics and automation (ICRA) 2013, pp 2839–2844

    Google Scholar 

  15. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286

    Google Scholar 

  16. Herbelin B, Benzaki P, Riquier F, Renault O, Thalmann D (2004) Using physiological measures for emotional assessment: a computer-aided tool for cognitive and behavioural therapy. ICDVRAT 2004:307–314

    Google Scholar 

  17. Herbelin B, Ponder M, Thalmann D (2005) Building exposure: synergy of interaction and narration through the social channel. Presence 14:234–246

    Article  Google Scholar 

  18. Jelić A, Appert-Rolland C, Lemercier S, Pettré J (2012) Properties of pedestrians walking in line: fundamental diagrams. Phys Rev E 85:036111

    Google Scholar 

  19. Johansson A, Helbing D, Shukla PK (2007) Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv Complex Syst 10 (supp02):271–288

    Google Scholar 

  20. Kallmann M, Thalmann D (1999) Direct 3d interaction with smart objects. In: Proceedings of the ACM symposium on virtual reality software and technology, pp 124–130

    Google Scholar 

  21. Kapadia M, Singh S, Hewlett W, Faloutsos P (2009) Egocentric affordance fields in pedestrian steering. In: I3D’09: proceedings of the 2009 symposium on interactive 3D graphics and games, pp 215–223

    Google Scholar 

  22. Karamouzas I, Overmars M (2010) A velocity-based approach for simulating human collision avoidance. In: Intelligent virtual agents. Springer, Berlin, pp 180–186

    Google Scholar 

  23. Karamouzas I, Overmars M (2012) Simulating and evaluating the local behavior of small pedestrian groups. Vis Comput Graph IEEE Trans 18:394–406

    Article  Google Scholar 

  24. Kirchner A, KlĂĽpfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech: Theory Exp 10:P10011

    Google Scholar 

  25. Klinger E, Bouchard S, Légeron P, Roy S, Lauer F, Chemin I, Nugues P (2005) Virtual reality therapy versus cognitive behavior therapy for social phobia: a preliminary controlled study. Cyberpsychol Behav 8(1):76–88

    Google Scholar 

  26. Krijn M, Emmelkamp PMG, Olafsson RP, Biemond R (2004) Virtual reality exposure therapy of anxiety disorders: a review. Clinical psychol Rev 24(3):259–281

    Google Scholar 

  27. Kulpa R, Olivier A-H, Ondřej J, Pettré J (2011) Imperceptible relaxation of collision avoidance constraints in virtual crowds. ACM Trans Graph 30:138:1–138:10

    Google Scholar 

  28. Laird JE, Newell A, Rosenbloom PS (1987) Soar: an architecture for general intelligence. Artif Intell 33(1):1–64

    Google Scholar 

  29. Lamarche F, Donikian S (2002) Automatic orchestration of behaviours through the management of resources and priority levels. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: part 3, pp 1309–1316

    Google Scholar 

  30. Lamarche F, Donikian S (2004) Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Comput Graph Forum 23:509–518

    Google Scholar 

  31. Lee DN (1976) A theory of visual control of braking based on information about time-to-collision. Perception 5:437–459

    Article  Google Scholar 

  32. Lemercier S, Jelic A, Kulpa R, Hua J, Fehrenbach J, Degond P, Appert-Rolland C, Donikian S, Pettré J (2012) Realistic following behaviors for crowd simulation. Comput Graph Forum 31:489–498

    Article  Google Scholar 

  33. Li W, Allbeck JM (2011) Populations with purpose. In: Motion in games. Springer, Berlin, Heidelberg, pp 132–143

    Google Scholar 

  34. Li T-Y, Jeng Y-J, Chang S-I (2001) Simulating virtual human crowds with a leader-follower model. In: Proceedings of computer animation 2001. The fourteenth conference on computer animation, pp 93 –102

    Google Scholar 

  35. Loscos C, Marchal D, Meyer A (2003) Intuitive crowd behavior in dense urban environments using local laws. Theory Pract Comput Graph 2003:122–129

    Article  Google Scholar 

  36. Manganas A, Tsiknakis M, Leisch E, Karefilaki L, Monsieurs K, Bossaert LL, Giorgini F (2004) Just in time health emergency interventions: an innovative approach to training the citizen for emergency situations using virtual reality techniques and advanced it tools (the web-cd). Studies in health technology and informatics, pp 315–326

    Google Scholar 

  37. MoussaĂŻd M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5:10047

    Article  Google Scholar 

  38. Moussaïd M, Guillot EG, Moreau M, Fehrenbach J, Chabiron O, Lemercier S, Pettré J, Appert-Rolland C, Degond P, Theraulaz G (2012) Traffic instabilities in self-organized pedestrian crowds. PLoS Comput Biol 8:1–10

    Google Scholar 

  39. Musse SR, Thalmann D (2001) Hierarchical model for real time simulation of virtual human crowds. Vis Comput Graph IEEE Trans 7(2):152–164

    Article  Google Scholar 

  40. Newell A (1994) Unified theories of cognition. Harvard University Press, Cambridge

    Google Scholar 

  41. Noser H, Renault O, Thalmann D, Thalmann NM (1995) Navigation for digital actors based on synthetic vision, memory, and learning. Comput Graph 19:7–19

    Google Scholar 

  42. Noser H, Thalmann D (1998) Sensor-based synthetic actors in a tennis game simulation. Vis Comput 14:193–205

    Google Scholar 

  43. Ondřej J, Pettré J, Olivier A-H, Donikian S (2010) A synthetic-vision based steering approach for crowd simulation. ACM Trans Graph 29:123:1–123:9

    Google Scholar 

  44. Paris S, Donikian S (2009) Activity-driven populace: a cognitive approach to crowd simulation. IEEE Comput Graph Appl 29(4):34–43

    Google Scholar 

  45. Paris S, Pettré J, Donikian S (2007) Pedestrian reactive navigation for crowd simulation: a predictive approach. Eurographics’07. Comput Graph Forum 26:665–674

    Google Scholar 

  46. Pelechano N, Allbeck JM, Badler NI (2007) Controlling individual agents in high-density crowd simulation. In: SCA’07: proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 99–108

    Google Scholar 

  47. Pertaub DP, Slater M, Barker C (2001) An experiment on fear of public speaking in virtual reality. Studies in health technology and informatics, pp 372–378

    Google Scholar 

  48. Peters C, Ennis C (2009) Modeling groups of plausible virtual pedestrians. IEEE Comput Graph Appl 29:54–63

    Google Scholar 

  49. Pettré J, Ondřej J, Olivier A-H, Cretual A, Donikian S (2009) Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: SCA’09: proceedings of the 2009 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 189–198

    Google Scholar 

  50. Qiu F, Hu X (2010) Modeling group structures in pedestrian crowd simulation. Simul Modell Pract Theory 18:190–205

    Google Scholar 

  51. Renault O, Thalmann NM, Thalmann D (1990) A vision-based approach to behavioural animation. J Vis Comput Anim 1:18–21

    Google Scholar 

  52. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH’87: proceedings of the 14th annual conference on computer graphics and interactive techniques, pp 25–34

    Google Scholar 

  53. Reynolds CW (1999) Steering behaviors for autonomous characters. In: Game developers conference. http://www.red3d.com/cwr/steer/gdc99

  54. Schadschneider A (2001) Cellular automaton approach to pedestrian dynamics—theory. In: Pedestrian and evacuation dynamics, pp 75–86

    Google Scholar 

  55. Schuerman M, Singh S, Kapadia M, Faloutsos P (2010) Situation agents: agent-based externalized steering logic. Comput Anim Virtual Worlds 21:267–276

    Google Scholar 

  56. Seyfried A, Steffen B, Klingsch W, Boltes M (2005) The fundamental diagram of pedestrian movement revisited. J Stat Mech: Theory Exp 10:P10002

    Google Scholar 

  57. Shoulson A, Garcia FM, Jones M, Mead R, Badler NI (2011) Parameterizing behavior trees. In: Proceedings of the 4th international conference on motion in games, pp 144–155

    Google Scholar 

  58. Silverman BG, Johns M, Cornwell J, O’Brien K (2006) Human behavior models for agents in simulators and games: part I: enabling science with pmfserv. Presence: Teleoper Virtual Environ 15(2):139–162

    Google Scholar 

  59. Singh H, Arter R, Dodd L, Langston P, Lester E, Drury J (2009) Modelling subgroup behaviour in crowd dynamics DEM simulation. Appl Math Modell 33:4408–4423

    Google Scholar 

  60. Stocker C, Sun L, Huang P, Qin W, Allbeck JM, Badler NI (2010) Smart events and primed agents. In: Intelligent virtual agents. Springer, Berlin, pp 15–27

    Google Scholar 

  61. Sun R (2006) Cognition and multi-agent interaction: from cognitive modeling to social simulation, chapter the CLARION cognitive architecture: extending cognitive modeling to social simulation. Cambridge University Press, Cambridge, p 142

    Google Scholar 

  62. Turner A (2007) To move through space: lines of vision and movement. In: Proceedings, 6th international space syntax symposium

    Google Scholar 

  63. Urban C, Schmidt B (2001) Pecs—agent-based modelling of human behaviour. In: Emotional and intelligent II—the tangled knot of social cognition, AAAI fall symposium

    Google Scholar 

  64. Ulrich W (1993) Transporttechnik der fussgänger—transporttechnische eigenschaften des fussgängerverkehrs (literaturstudie). Technical report, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich, German

    Google Scholar 

  65. van den Berg J, Stephen G, Ming L, Dinesh M (2011) Reciprocal n-body collision avoidance. Robotics research, vol 70. Springer, Berlin, pp 3–19

    Google Scholar 

  66. Wang Y, Dubey R, Magnenat-Thalmann N, Thalmann D (2013) An immersive multi-agent system for interactive applications. Vis Comput 29:323–332

    Google Scholar 

  67. Wiggins JS (1996) The five-factor model of personality: theoretical perspectives. Guilford Press, New York

    Google Scholar 

  68. Yamori K (1998) Going with the flow: micro-macro dynamics in the macrobehavioral patterns of pedestrian crowds. Psychol Rev 105:530–557

    Google Scholar 

  69. Yilmaz EH, Warren WH (1995) Visual control of braking: a test of the \(\dot{\tau }\) hypothesis. J Exp Psychol: Hum Percept Perform 21(5):996–1014

    Google Scholar 

  70. Yu Q, Terzopoulos D (2007) A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 119–128

    Google Scholar 

  71. Zhang Y, Pettre J, Qin X, Donikian S, Peng Q (2011) A local behavior model for small pedestrian groups. In: 12th international conference on computer-aided design and computer graphics (CAD/Graphics), pp 275–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Lemercier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lemercier, S., Thalmann, D. (2016). Multiple Virtual Human Interactions. In: Magnenat-Thalmann, N., Yuan, J., Thalmann, D., You, BJ. (eds) Context Aware Human-Robot and Human-Agent Interaction. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-19947-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19947-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19946-7

  • Online ISBN: 978-3-319-19947-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics