Advertisement

Multiple Virtual Human Interactions

  • Samuel Lemercier
  • Daniel Thalmann
Chapter
Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

Autonomous virtual humans need to be able to interact between each others in virtual environments. These interactions are essentials for the generation of realistic behaviours from virtual humans. This chapter presents a review about interactions between real and multiple virtual humans, as well as between themselves. After presenting the problematics and approaches raised by virtual humans interactions, different methods for simulating such interactions are discussed. Interactions between real and multiple virtual humans are presented first with a focus on virtual assistants and social phobia examples. Interactions between virtual humans are then adressed, particularly gaze attention of other characters and navigation interactions between multiple virtual humans.

Keywords

Social Phobia Collision Avoidance Interest Point Basic Life Support Navigation Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111:1036–1060Google Scholar
  2. 2.
    Aw A, Klar A, Materne T, Rascle M (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J Appl Math 63:259–278zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Braun A, Musse SR, de Oliveira LPL, Bodmann BEJ (2003) Modeling individual behaviors in crowd simulation. In: Computer animation and social agents, international conference on 2003, p 0:143Google Scholar
  4. 4.
    Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A Stat Mech Appl 295:507–525zbMATHCrossRefGoogle Scholar
  5. 5.
    Cavazza M, Charles F, Mead SJ (2002) Character-based interactive storytelling. IEEE Intell Syst 17(4):17–24Google Scholar
  6. 6.
    Conde T, Thalmann D (2006) An integrated perception for autonomous virtual agents: active and predictive perception. Comput Anim Virtual Worlds 17:457–468Google Scholar
  7. 7.
    Daamen W, Hoogendoorn SP (2003) Qualitative results from pedestrian laboratory experiments. In: Pedestrian and evacuation dynamics, pp 121–132Google Scholar
  8. 8.
    Fajen BR (2007) Affordance-based control of visually guided action. Ecol Psychol 19:383–410Google Scholar
  9. 9.
    Fajen BR, Warren WH, Temizer S, Kaelbling LP (2003) A dynamical model of visually-guided steering, obstacle avoidance, and route selection. Int J Comput Vis 54(1–3):13–34Google Scholar
  10. 10.
    Golas A, Narain R, Lin M (2013) Hybrid long-range collision avoidance for crowd simulation. In: Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and games, pp 29–36Google Scholar
  11. 11.
    Grillon H, Thalmann D (2009) Simulating gaze attention behaviors for crowds. Comput Anim Virtual Worlds 20:111–119Google Scholar
  12. 12.
    Grillon H, Riquier F, Herbelin B, Thalmann D (2006) Virtual reality as a therapeutic tool in the confines of social anxiety disorder treatment. Int J Disabil Hum Dev 5:243–250Google Scholar
  13. 13.
    Guy SJ, Kim S, Lin MC, Manocha D (2011) Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 43–52Google Scholar
  14. 14.
    He L, van den Berg J (2013) Meso-scale planning for multi-agent navigation. In: IEEE international conference on robotics and automation (ICRA) 2013, pp 2839–2844Google Scholar
  15. 15.
    Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286Google Scholar
  16. 16.
    Herbelin B, Benzaki P, Riquier F, Renault O, Thalmann D (2004) Using physiological measures for emotional assessment: a computer-aided tool for cognitive and behavioural therapy. ICDVRAT 2004:307–314Google Scholar
  17. 17.
    Herbelin B, Ponder M, Thalmann D (2005) Building exposure: synergy of interaction and narration through the social channel. Presence 14:234–246CrossRefGoogle Scholar
  18. 18.
    Jelić A, Appert-Rolland C, Lemercier S, Pettré J (2012) Properties of pedestrians walking in line: fundamental diagrams. Phys Rev E 85:036111Google Scholar
  19. 19.
    Johansson A, Helbing D, Shukla PK (2007) Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv Complex Syst 10 (supp02):271–288Google Scholar
  20. 20.
    Kallmann M, Thalmann D (1999) Direct 3d interaction with smart objects. In: Proceedings of the ACM symposium on virtual reality software and technology, pp 124–130Google Scholar
  21. 21.
    Kapadia M, Singh S, Hewlett W, Faloutsos P (2009) Egocentric affordance fields in pedestrian steering. In: I3D’09: proceedings of the 2009 symposium on interactive 3D graphics and games, pp 215–223Google Scholar
  22. 22.
    Karamouzas I, Overmars M (2010) A velocity-based approach for simulating human collision avoidance. In: Intelligent virtual agents. Springer, Berlin, pp 180–186Google Scholar
  23. 23.
    Karamouzas I, Overmars M (2012) Simulating and evaluating the local behavior of small pedestrian groups. Vis Comput Graph IEEE Trans 18:394–406CrossRefGoogle Scholar
  24. 24.
    Kirchner A, Klüpfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech: Theory Exp 10:P10011Google Scholar
  25. 25.
    Klinger E, Bouchard S, Légeron P, Roy S, Lauer F, Chemin I, Nugues P (2005) Virtual reality therapy versus cognitive behavior therapy for social phobia: a preliminary controlled study. Cyberpsychol Behav 8(1):76–88Google Scholar
  26. 26.
    Krijn M, Emmelkamp PMG, Olafsson RP, Biemond R (2004) Virtual reality exposure therapy of anxiety disorders: a review. Clinical psychol Rev 24(3):259–281Google Scholar
  27. 27.
    Kulpa R, Olivier A-H, Ondřej J, Pettré J (2011) Imperceptible relaxation of collision avoidance constraints in virtual crowds. ACM Trans Graph 30:138:1–138:10Google Scholar
  28. 28.
    Laird JE, Newell A, Rosenbloom PS (1987) Soar: an architecture for general intelligence. Artif Intell 33(1):1–64Google Scholar
  29. 29.
    Lamarche F, Donikian S (2002) Automatic orchestration of behaviours through the management of resources and priority levels. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: part 3, pp 1309–1316Google Scholar
  30. 30.
    Lamarche F, Donikian S (2004) Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Comput Graph Forum 23:509–518Google Scholar
  31. 31.
    Lee DN (1976) A theory of visual control of braking based on information about time-to-collision. Perception 5:437–459CrossRefGoogle Scholar
  32. 32.
    Lemercier S, Jelic A, Kulpa R, Hua J, Fehrenbach J, Degond P, Appert-Rolland C, Donikian S, Pettré J (2012) Realistic following behaviors for crowd simulation. Comput Graph Forum 31:489–498CrossRefGoogle Scholar
  33. 33.
    Li W, Allbeck JM (2011) Populations with purpose. In: Motion in games. Springer, Berlin, Heidelberg, pp 132–143Google Scholar
  34. 34.
    Li T-Y, Jeng Y-J, Chang S-I (2001) Simulating virtual human crowds with a leader-follower model. In: Proceedings of computer animation 2001. The fourteenth conference on computer animation, pp 93 –102Google Scholar
  35. 35.
    Loscos C, Marchal D, Meyer A (2003) Intuitive crowd behavior in dense urban environments using local laws. Theory Pract Comput Graph 2003:122–129CrossRefGoogle Scholar
  36. 36.
    Manganas A, Tsiknakis M, Leisch E, Karefilaki L, Monsieurs K, Bossaert LL, Giorgini F (2004) Just in time health emergency interventions: an innovative approach to training the citizen for emergency situations using virtual reality techniques and advanced it tools (the web-cd). Studies in health technology and informatics, pp 315–326Google Scholar
  37. 37.
    Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5:10047CrossRefGoogle Scholar
  38. 38.
    Moussaïd M, Guillot EG, Moreau M, Fehrenbach J, Chabiron O, Lemercier S, Pettré J, Appert-Rolland C, Degond P, Theraulaz G (2012) Traffic instabilities in self-organized pedestrian crowds. PLoS Comput Biol 8:1–10Google Scholar
  39. 39.
    Musse SR, Thalmann D (2001) Hierarchical model for real time simulation of virtual human crowds. Vis Comput Graph IEEE Trans 7(2):152–164CrossRefGoogle Scholar
  40. 40.
    Newell A (1994) Unified theories of cognition. Harvard University Press, CambridgeGoogle Scholar
  41. 41.
    Noser H, Renault O, Thalmann D, Thalmann NM (1995) Navigation for digital actors based on synthetic vision, memory, and learning. Comput Graph 19:7–19Google Scholar
  42. 42.
    Noser H, Thalmann D (1998) Sensor-based synthetic actors in a tennis game simulation. Vis Comput 14:193–205Google Scholar
  43. 43.
    Ondřej J, Pettré J, Olivier A-H, Donikian S (2010) A synthetic-vision based steering approach for crowd simulation. ACM Trans Graph 29:123:1–123:9Google Scholar
  44. 44.
    Paris S, Donikian S (2009) Activity-driven populace: a cognitive approach to crowd simulation. IEEE Comput Graph Appl 29(4):34–43Google Scholar
  45. 45.
    Paris S, Pettré J, Donikian S (2007) Pedestrian reactive navigation for crowd simulation: a predictive approach. Eurographics’07. Comput Graph Forum 26:665–674Google Scholar
  46. 46.
    Pelechano N, Allbeck JM, Badler NI (2007) Controlling individual agents in high-density crowd simulation. In: SCA’07: proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 99–108Google Scholar
  47. 47.
    Pertaub DP, Slater M, Barker C (2001) An experiment on fear of public speaking in virtual reality. Studies in health technology and informatics, pp 372–378Google Scholar
  48. 48.
    Peters C, Ennis C (2009) Modeling groups of plausible virtual pedestrians. IEEE Comput Graph Appl 29:54–63Google Scholar
  49. 49.
    Pettré J, Ondřej J, Olivier A-H, Cretual A, Donikian S (2009) Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: SCA’09: proceedings of the 2009 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 189–198Google Scholar
  50. 50.
    Qiu F, Hu X (2010) Modeling group structures in pedestrian crowd simulation. Simul Modell Pract Theory 18:190–205Google Scholar
  51. 51.
    Renault O, Thalmann NM, Thalmann D (1990) A vision-based approach to behavioural animation. J Vis Comput Anim 1:18–21Google Scholar
  52. 52.
    Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH’87: proceedings of the 14th annual conference on computer graphics and interactive techniques, pp 25–34Google Scholar
  53. 53.
    Reynolds CW (1999) Steering behaviors for autonomous characters. In: Game developers conference. http://www.red3d.com/cwr/steer/gdc99
  54. 54.
    Schadschneider A (2001) Cellular automaton approach to pedestrian dynamics—theory. In: Pedestrian and evacuation dynamics, pp 75–86Google Scholar
  55. 55.
    Schuerman M, Singh S, Kapadia M, Faloutsos P (2010) Situation agents: agent-based externalized steering logic. Comput Anim Virtual Worlds 21:267–276Google Scholar
  56. 56.
    Seyfried A, Steffen B, Klingsch W, Boltes M (2005) The fundamental diagram of pedestrian movement revisited. J Stat Mech: Theory Exp 10:P10002Google Scholar
  57. 57.
    Shoulson A, Garcia FM, Jones M, Mead R, Badler NI (2011) Parameterizing behavior trees. In: Proceedings of the 4th international conference on motion in games, pp 144–155Google Scholar
  58. 58.
    Silverman BG, Johns M, Cornwell J, O’Brien K (2006) Human behavior models for agents in simulators and games: part I: enabling science with pmfserv. Presence: Teleoper Virtual Environ 15(2):139–162Google Scholar
  59. 59.
    Singh H, Arter R, Dodd L, Langston P, Lester E, Drury J (2009) Modelling subgroup behaviour in crowd dynamics DEM simulation. Appl Math Modell 33:4408–4423Google Scholar
  60. 60.
    Stocker C, Sun L, Huang P, Qin W, Allbeck JM, Badler NI (2010) Smart events and primed agents. In: Intelligent virtual agents. Springer, Berlin, pp 15–27Google Scholar
  61. 61.
    Sun R (2006) Cognition and multi-agent interaction: from cognitive modeling to social simulation, chapter the CLARION cognitive architecture: extending cognitive modeling to social simulation. Cambridge University Press, Cambridge, p 142Google Scholar
  62. 62.
    Turner A (2007) To move through space: lines of vision and movement. In: Proceedings, 6th international space syntax symposiumGoogle Scholar
  63. 63.
    Urban C, Schmidt B (2001) Pecs—agent-based modelling of human behaviour. In: Emotional and intelligent II—the tangled knot of social cognition, AAAI fall symposiumGoogle Scholar
  64. 64.
    Ulrich W (1993) Transporttechnik der fussgänger—transporttechnische eigenschaften des fussgängerverkehrs (literaturstudie). Technical report, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich, GermanGoogle Scholar
  65. 65.
    van den Berg J, Stephen G, Ming L, Dinesh M (2011) Reciprocal n-body collision avoidance. Robotics research, vol 70. Springer, Berlin, pp 3–19Google Scholar
  66. 66.
    Wang Y, Dubey R, Magnenat-Thalmann N, Thalmann D (2013) An immersive multi-agent system for interactive applications. Vis Comput 29:323–332Google Scholar
  67. 67.
    Wiggins JS (1996) The five-factor model of personality: theoretical perspectives. Guilford Press, New YorkGoogle Scholar
  68. 68.
    Yamori K (1998) Going with the flow: micro-macro dynamics in the macrobehavioral patterns of pedestrian crowds. Psychol Rev 105:530–557Google Scholar
  69. 69.
    Yilmaz EH, Warren WH (1995) Visual control of braking: a test of the \(\dot{\tau }\) hypothesis. J Exp Psychol: Hum Percept Perform 21(5):996–1014Google Scholar
  70. 70.
    Yu Q, Terzopoulos D (2007) A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 119–128Google Scholar
  71. 71.
    Zhang Y, Pettre J, Qin X, Donikian S, Peng Q (2011) A local behavior model for small pedestrian groups. In: 12th international conference on computer-aided design and computer graphics (CAD/Graphics), pp 275–281Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.BeingThere CentreNanyang Technological UniversitySingaporeSingapore

Personalised recommendations