Skip to main content

Epoxy Resins for Light and Transmission Electron Microscopy

  • Chapter
  • First Online:
Plant Microtechniques and Protocols

Abstract

Compared to other epoxy resins, low viscosity Spurr’s resin infiltrates plant tissues more readily and has over the last 45 years become the resin of choice for embedding plant tissues for transmission electron microscopy. This chapter details the six fundamental steps in preparing plant tissues for correlative anatomical studies involving the use of both light and electron microscopy: fixation, dehydration, infiltration, embedding, sectioning and staining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glauert AM, Rogers GE, Glauert RH (1956) A new embedding medium for electron microscopy. Nature 178:803

    Article  CAS  PubMed  Google Scholar 

  2. Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    CAS  PubMed  Google Scholar 

  3. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hayat MA (2000) Principles and techniques of electron microscopy: biological applications, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  5. Ellis AE (2014) No more Epon 812: this product does not exist today. Microscopy Today 22:50–53

    Article  Google Scholar 

  6. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  7. Glauert AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy. Princeton University Press, Princeton

    Book  Google Scholar 

  8. Bozzola JJ, Russell LD (1999) Electron microscopy, 2nd edn. Jones and Bartlett, Sudbury

    Google Scholar 

  9. Russell SD, Preston L, Strout G (2014) Principles and techniques of transmission electron microscopy. Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma online resource. http://www.ou.edu/research/electron/bmz5364/. Accessed 13 July 2015

  10. O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi, Melbourne

    Google Scholar 

  11. Hayat MA (1986) Basic techniques for transmission electron microscopy. Academic, London

    Google Scholar 

  12. Chang RFE, Klomparens KL (eds) (1988) Artifacts in biological electron microscopy. ­Plenum, New York

    Google Scholar 

  13. Gephart P, Murray RGE, Costilow RN, Wood WA et al (1981) Manual of methods for general bacteriology (Amer Soc Microbiol). ASM Press, Washington, D.C.

    Google Scholar 

  14. Fisher DB (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16:92–96

    Article  CAS  PubMed  Google Scholar 

  15. Fulcher RG, Wong SI (1980) Inside cereals—a fluorescence microchemical view. In: Inglett GE, Munch L (eds) Cereals for food and beverages—recent progress in cereal chemistry. Academic, New York, pp 1–26

    Google Scholar 

  16. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hanaichi T, Sato T, Hoshin M, Mizuno N (1986) A stable lead stain by modification of Sato’s method. Proc XIth Int Cong Electron Microscopy. Kyoto, pp 2181–2182 (English corrected)

    Google Scholar 

  19. Thiery JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6:987–1017

    CAS  Google Scholar 

  20. Hepler PK (1981) The structure of the endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26:102–110

    CAS  PubMed  Google Scholar 

  21. Hayat MA (1981) Fixation for electron microscopy. Academic, New York

    Google Scholar 

  22. Jensen WA (1962) Botanical histochemistry: principles and practice. Freeman, San Francisco

    Google Scholar 

  23. Pappas PW (1971) The use of a chrome alum-gelatin (subbing) solution as a general adhesive for paraffin sections. Stain Technol 46:121–124

    CAS  PubMed  Google Scholar 

  24. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  25. Hale AJ (1957) The histochemistry of polysaccharides. Int Rev Cytol 6:193–263

    Article  CAS  Google Scholar 

  26. Roland JC (1978) General preparation and staining of thin sections. In: Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 1–62

    Google Scholar 

  27. Lane BP, Europa DL (1965) Differential staining of ultrathin sections of epon-embedded tissues for light microscopy. J Histochem Cytochem 13:579–582

    Article  CAS  PubMed  Google Scholar 

  28. Hughes J, McCully ME (1975) The use of an optical brightener in the study of plant structure. Stain Technol 50:319–329

    CAS  PubMed  Google Scholar 

  29. Schnepf E, Deichgraber G, Herth W (1982) Development of cell wall appendages in Acanthosphaera zachariasi (Chlorococcales): kinetics, site of cellulose synthesis and microfibril assembly, and barb formation. Protoplasma 110:203–214

    Article  CAS  Google Scholar 

  30. Wood PJ, Fulcher RG (1978) Interactions of some dyes with cereal beta glucans. Cereal Chem 55:952–966

    CAS  Google Scholar 

  31. Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented structural polysaccharide fibrils. Protoplasma 105:129–133

    Article  Google Scholar 

  32. Smith MM, McCully ME (1978) A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma 95:229–254

    Article  CAS  Google Scholar 

  33. White DL, Mazurkeiwicz JE, Barrnett RJ (1979) A chemical mechanism for tissue staining by osmium tetroxide-ferrocyanide mixtures. J Histochem Cytochem 27:1084–1091

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael John Sumner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sumner, M. (2015). Epoxy Resins for Light and Transmission Electron Microscopy. In: Yeung, E., Stasolla, C., Sumner, M., Huang, B. (eds) Plant Microtechniques and Protocols. Springer, Cham. https://doi.org/10.1007/978-3-319-19944-3_5

Download citation

Publish with us

Policies and ethics