Skip to main content

Collecting and Processing Wood Microcores for Monitoring Xylogenesis

  • Chapter
  • First Online:
Plant Microtechniques and Protocols

Abstract

Detailed analyses of cambium activity and wood formation need repeated samplings of the developing xylem and specific procedures for sample preparation. In order to minimize the damage to the stem, wood samples are extracted as microcores. Because of the small size of the samples, inclusion in an embedding medium, such as paraffin, is suggested to adequately fix the samples and to cut the tissues in thin sections with a microtome. Sections are stained and observed under normal and polarized light to identify the cambial region, stages of wood formation (enlargement and cell wall thickening) and mature cells. This procedure allows quantitative data to be obtained quickly to reconstruct timings and patterns of wood formation (duration and rates) in tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahn A, Werker E (1990) Seasonal cambial activity. In: Iqbal M (ed) The vascular cambium. Research Studies Press, Taunton, pp 139–157

    Google Scholar 

  2. Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  3. Gricar J, Cufar K (2008) Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Rus J Plant Physiol 55:538–543

    Article  CAS  Google Scholar 

  4. Cufar K, Cherubini M, Gricar J et al (2011) Xylem and phloem formation in chestnut (Castanea sativa Mill.) during the 2008 growing season. Dendrochronologia 29:127–134

    Article  Google Scholar 

  5. Forster T, Schweingruber FH, Denneler B (2000) Increment puncher—a tool for extracting small cores of wood and bark from living trees. IAWA J 21:169–180

    Article  Google Scholar 

  6. Rossi S, Anfodillo T, Menardi R (2006) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97

    Article  Google Scholar 

  7. Seo J-W, Eckstein D, Schmitt U (2007) The pinning method: from pinning to data preparation. Dendrochronologia 25:79–86

    Article  Google Scholar 

  8. Deslauriers A, Morin H, Begin Y (2003) Cellular phenology of annual ring formation of Abies balsamea in Quebec boreal forest (Canada). Can J For Res 33:190–200

    Article  Google Scholar 

  9. Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968

    Article  PubMed  Google Scholar 

  10. Jyske T, Mäkinen H, Kalliokoski T et al (2014) Intra-annual tracheid production of Norway spruce and scots pine across a latitudinal gradient in Finland. Agric For Meteorol 194:241–254

    Article  Google Scholar 

  11. Cuny HE, Rathgeber CBK, Lebourgeois F et al (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625

    Article  PubMed  Google Scholar 

  12. Rossi S, Deslauriers A, Griçar J et al (2008) Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol Biogeog 17:696–707

    Article  Google Scholar 

  13. Deslauriers A, Rossi S, Anfodillo T et al (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871

    Article  PubMed  Google Scholar 

  14. Rossi S, Deslauriers A, Anfodillo T et al (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12

    Article  PubMed  Google Scholar 

  15. Cufar K, Prislan P, de Luis M et al (2008) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758

    Article  Google Scholar 

  16. Heinrichs DK, Tardif JC, Bergeron Y (2007) Xylem production in six tree species growing on an island in the boreal forest region of western Quebec, Canada. Can J Bot 85:518–525

    Article  Google Scholar 

  17. Moser L, Fonti P, Buntgen U et al (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233

    Article  PubMed  Google Scholar 

  18. Deslauriers A, Beaulieu M, Balducci L et al (2014) Impact of warming and drought on carbon balance related to wood formation in black spruce. Ann Bot 114:335–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Deslauriers A, Giovannelli A, Rossi S et al (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235

    Article  CAS  PubMed  Google Scholar 

  20. Gruber A, Pirkebner D, Florian C et al (2012) No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress. Plant Biol 14:142–148

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Simard S, Giovannelli A, Treydte K et al (2013) Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol 33:913–923

    Article  CAS  PubMed  Google Scholar 

  22. Michelot A, Simard S, Rathgeber C et al (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045

    Article  PubMed  Google Scholar 

  23. Lupi C, Morin H, Deslauriers A et al (2012) Xylogenesis in black spruce: does soil temperature matter? Tree Physiol 32:74–82

    Article  PubMed  Google Scholar 

  24. Gričar J, Čufar K, Oven P et al (2005) Differentiation of terminal latewood tracheids in silver fir trees during autumn. Ann Bot 95:959–965

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gricar J, Zupancic M, Cufar K et al (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gruber A, Baumgartner D, Zimmermann J et al (2009) Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Tree—Struct Funct 23:623–635

    Article  Google Scholar 

  27. Gruber A, Strobl S, Veit B et al (2010) Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol 30:490–501

    Article  PubMed Central  PubMed  Google Scholar 

  28. Balducci L, Deslauriers A, Giovannelli A et al (2013) Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings. Tree Physiol 33:1006–1017

    Article  PubMed  Google Scholar 

  29. Pasho E, Camarero JJ, Vicente-Serrano SM (2012) Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Tree—Struct Funct 26:1875–1886

    Article  Google Scholar 

  30. Rossi S, Morin H, Deslauriers A et al (2011) Predicting xylem phenology in black spruce under climate warming. Global Change Biol 17:614–625

    Article  Google Scholar 

  31. Rossi S, Girard MJ, Morin H (2014) Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Global Change Biol 20:2261–2271

    Article  Google Scholar 

  32. Lugo JB, Deslauriers A, Rossi S (2012) Duration of xylogenesis in black spruce lengthened between 1950 and 2010. Ann Bot 110:1099–1108

    Article  Google Scholar 

  33. Donaldson LA (1991) Seasonal changes in lignin distribution during tracheid development in Pinus radiata D. Don. Wood Sci Tech 25:15–24

    Article  CAS  Google Scholar 

  34. Abe H, Funada R, Ohtani J et al (1997) Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11:328–332

    Article  Google Scholar 

  35. Thibeault-Martel M, Krause C, Morin H et al (2008) Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann Bot 102:667–674

    Article  PubMed Central  PubMed  Google Scholar 

  36. Anderson G, Bancroft JD (2002) Tissue processing and microtomy including frozen. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Churchill Livingstone, London, pp 85–107

    Google Scholar 

  37. van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Article  Google Scholar 

  38. Rossi S, Deslauriers A, Gricar J et al (2008) Critical temperatures for xylogenesis in conifers of clod climates. Glob Ecol Biogeog 17:696–707

    Article  Google Scholar 

  39. Savidge RA (2000) Biochemistry of seasonal cambial growth and wood formation—an overview of the challenges. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Ltd, Oxford, pp 1–30

    Google Scholar 

  40. Marion L, Gricar J, Oven P (2007) Wood formation in urban Norway maple trees studied by the micro-coring method. Dendrochronologia 25:97–102

    Article  Google Scholar 

  41. Rossi S, Deslauriers A, Anfodillo T et al (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310

    Article  PubMed  Google Scholar 

  42. Vieira J, Rossi S, Campelo F et al (2014) Are neighbouring trees in tune? Eur J Forest Res 133:41–50

    Article  Google Scholar 

  43. de Luis M, Novak K, Raventos J et al (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169

    Article  Google Scholar 

  44. Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  45. Krepkowski J, Brauning A, Gebrekirstos A et al (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25:59–70

    Article  Google Scholar 

  46. Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–39

    Article  Google Scholar 

  47. Cuny HE, Rathgeber CBK, Kiesse TS et al (2013) Generalized additive models reveal the intrinsic complexity of wood formation dynamics. J Exp Bot 64:1983–1994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Rathgeber CBK, Longuetaud F, Mothe F et al (2011) Phenology of wood formation: Data processing, analysis and visualisation using R (package CAVIAR). Dendrochronologia 29:139–149

    Article  Google Scholar 

  49. Cuny HE, Rathgeber CBK, Frank D et al (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from Consortium de Recherche sur la Forêt Boréale Commerciale, Fonds de Recherche sur la Nature et les Technologies du Québec, National Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, and Forêt dʼEnseignement et de Recherche Simoncouche. The author thanks E. Gallo, R. Menardi, C. Soucy for their technical recommendations and A. Garside for editing the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Deslauriers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deslauriers, A., Rossi, S., Liang, E. (2015). Collecting and Processing Wood Microcores for Monitoring Xylogenesis. In: Yeung, E., Stasolla, C., Sumner, M., Huang, B. (eds) Plant Microtechniques and Protocols. Springer, Cham. https://doi.org/10.1007/978-3-319-19944-3_23

Download citation

Publish with us

Policies and ethics