Skip to main content

Fluid Management During and After the Operation: Less Is More or More Is Less?

  • Chapter
  • First Online:
  • 1412 Accesses

Abstract

Lung injury following thoracic surgery is a major cause of morbidity and mortality. A consistent risk factor is excessive perioperative fluid administration, not only following pneumonectomy but also after lesser lung resections and esophageal surgery. Recent insights into the pathophysiology of lung injury after thoracic surgery include the role of the endothelial glycocalyx, pulmonary endothelium, lung lymphatics, and right ventricular dysfunction. While a restrictive approach to fluid administration may reduce the risk of lung injury, there are concerns regarding the risks of acute kidney injury with this approach. Goal-directed approaches may be applied to the thoracic surgical population, and lung ultrasound appears to be a promising new technique to further guide perioperative fluid therapy. There is a paucity of data to guide the choice of crystalloid or colloid solution. Further research is required regarding prevention, diagnosis, and treatment of lung injury following thoracic surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Licker M, Fauconnet P, Villiger Y, Tschopp J-M (2009) Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol 22(1):61–67

    Article  PubMed  Google Scholar 

  2. Slinger PD (1995) Perioperative fluid management for thoracic surgery: the puzzle of postpneumonectomy pulmonary edema. J Cardiothorac Vasc Anesth 9(4):442–451

    Article  CAS  PubMed  Google Scholar 

  3. Ashes C, Slinger P (2014) Volume management and resuscitation in thoracic surgery. Curr Anesthesiol Rep 4:386–396

    Article  Google Scholar 

  4. Zeldin RA, Normandin D, Landtwing D, Peters RM (1984) Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg 87:359–365

    CAS  PubMed  Google Scholar 

  5. Gothard J (2006) Lung injury after thoracic surgery and one-lung ventilation. Curr Opin Anaesthesiol 19(1):5–10

    Article  PubMed  Google Scholar 

  6. Casado D, López F, Martí R (2010) Perioperative fluid management and major respiratory complications in patients undergoing esophagectomy. Dis Esophagus 23(7):523–528

    Article  CAS  PubMed  Google Scholar 

  7. Turnage WS, Lunn JJ (1993) Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest 103(6):1646–1650

    Article  CAS  PubMed  Google Scholar 

  8. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al (1994) The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    Article  CAS  PubMed  Google Scholar 

  9. Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C et al (2003) Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg 97(6):1558–1565

    Article  PubMed  Google Scholar 

  10. Ruffini E, Parola A, Papalia E, Filosso PL, Mancuso M, Oliaro A et al (2001) Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur J Cardiothorac Surg 20(1):30–36, –discussion36–7

    Article  CAS  PubMed  Google Scholar 

  11. Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P (2000) Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg 69(2):376–380

    Article  CAS  PubMed  Google Scholar 

  12. Marret E, Miled F, Bazelly B, El Metaoua S, de Montblanc J, Quesnel C et al (2010) Risk and protective factors for major complications after pneumonectomy for lung cancer. Interact Cardiovasc Thorac Surg 10(6):936–939

    Article  PubMed  Google Scholar 

  13. Sen S, Sen S, Sentürk E, Kuman NK (2010) Postresectional lung injury in thoracic surgery pre and intraoperative risk factors: a retrospective clinical study of a hundred forty-three cases. J Cardiothorac Surg 5(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  14. Parquin F, Marchal M, Mehiri S, Hervé P, Lescot B (1996) Post-pneumonectomy pulmonary edema: analysis and risk factors. Eur J Cardiothorac Surg 10(11):929–932

    Article  CAS  PubMed  Google Scholar 

  15. Alam N, Park BJ, Wilton A, Seshan VE, Bains MS, Downey RJ et al (2007) Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg 84(4):1085–1091

    Article  PubMed  Google Scholar 

  16. Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O (2006) Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology 105(1):14–18

    Article  PubMed  Google Scholar 

  17. Verheijen-Breemhaar L, Bogaard JM, van den Berg B, Hilvering C (1988) Postpneumonectomy pulmonary oedema. Thorax 43(4):323–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mizuno Y, Iwata H, Shirahashi K, Takamochi K, Oh S, Suzuki K et al (2012) The importance of intraoperative fluid balance for the prevention of postoperative acute exacerbation of idiopathic pulmonary fibrosis after pulmonary resection for primary lung cancer. Eur J Cardiothorac Surg 41(6):e161–e165

    Article  PubMed  Google Scholar 

  19. Tandon S, Batchelor A, Bullock R, Gascoigne A, Griffin M, Hayes N et al (2001) Peri-operative risk factors for acute lung injury after elective oesophagectomy. Br J Anaesth 86(5):633–638

    Article  CAS  PubMed  Google Scholar 

  20. Evans RG, Naidu B (2012) Does a conservative fluid management strategy in the perioperative management of lung resection patients reduce the risk of acute lung injury? Interact Cardiovasc Thorac Surg 15(3):498–504

    Article  PubMed  PubMed Central  Google Scholar 

  21. Litell JM, Gong MN, Talmor D, Gajic O (2011) Acute lung injury: prevention may be the best medicine. Respir Care 56(10):1546–1554

    Article  PubMed  Google Scholar 

  22. Guarracino F (2012) Perioperative acute lung injury: reviewing the role of anesthetic management. J Anesth Clin Res 4:312

    Google Scholar 

  23. Slinger P (1999) Post-pneumonectomy pulmonary edema: is anesthesia to blame? Curr Opin Anaesthesiol 12(1):49–54

    Article  CAS  PubMed  Google Scholar 

  24. Lases EC, Duurkens VA, Gerritsen WB, Haas FJ (2000) Oxidative stress after lung resection therapy: a pilot study. Chest 117(4):999–1003

    Article  CAS  PubMed  Google Scholar 

  25. Evans RG, Ndunge OBA, Naidu B (2013) A novel two-hit rodent model of postoperative acute lung injury: priming the immune system leads to an exaggerated injury after pneumonectomy. Interact Cardiovasc Thorac Surg 16(6):844–848

    Article  PubMed  PubMed Central  Google Scholar 

  26. Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol (Lond) 19(4):312–326

    Article  CAS  Google Scholar 

  27. Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised starling principle. Cardiovasc Res 87(2):198–210

    Article  CAS  PubMed  Google Scholar 

  28. Bates DO, Levick JR, Mortimer PS (1994) Starling pressures in the human arm and their alteration in postmastectomy oedema. J Physiol 477:355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aukland K, Reed RK (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73:1–78

    CAS  PubMed  Google Scholar 

  30. Chau EHL, Slinger P (2014) Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothorac Vasc Anesth 18(1):36–44

    Article  PubMed  Google Scholar 

  31. Collins SR, Blank RS, Deatherage LS, Dull RO (2013) The endothelial glycocalyx. Anesth Analg 117(3):664–674

    Article  PubMed  PubMed Central  Google Scholar 

  32. Danielli JF (1940) Capillary permeability and oedema in the perfused frog. J Physiol 98(1):109–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lipowsky HH (2005) Microvascular rheology and hemodynamics. Microcirculation 12(1):5–15

    Article  PubMed  Google Scholar 

  34. Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, Oude egbrink MGA (2007) The endothelial glycocalyx: composition, functions, and visualization. Eur J Physiol 454(3):345–359

    Article  CAS  Google Scholar 

  35. Alphonsus CS, Rodseth RN (2014) The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69(7):777–784

    Article  CAS  PubMed  Google Scholar 

  36. Jacob M, Rehm M, Loetsch M, Paul JO, Bruegger D, Welsch U et al (2007) The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res 44(6):435–443

    Article  CAS  PubMed  Google Scholar 

  37. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U et al (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104(1):78–89

    Article  CAS  PubMed  Google Scholar 

  38. Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289(5):H1993–H1999

    Article  CAS  PubMed  Google Scholar 

  39. Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G (2010) The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med 36(8):1286–1298

    Article  CAS  PubMed  Google Scholar 

  40. Jacob M, Paul O, Mehringer L, Chappell D, Rehm M, Welsch U et al (2009) Albumin augmentation improves condition of guinea pig hearts after 4 hr of cold ischemia. Transplantation 87(7):956–965

    Article  PubMed  Google Scholar 

  41. Chappell D, Jacob M, Hofmann-Kiefer K, Bruegger D, Rehm M, Conzen P et al (2007) Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology 107(5):776–784

    Article  CAS  PubMed  Google Scholar 

  42. Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P et al (2009) Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res 83(2):388–396

    Article  CAS  PubMed  Google Scholar 

  43. Nieuwdorp M, Meuwese MC, Mooij HL, van Lieshout MHP, Hayden A, Levi M et al (2009) Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 202(1):296–303

    Article  CAS  PubMed  Google Scholar 

  44. De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D et al (2009) Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology 110(6):1316–1326

    Article  PubMed  CAS  Google Scholar 

  45. Schilling T, Kozian A, Senturk M, Huth C, Reinhold A, Hedenstierna G et al (2011) Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology 115(1):65–74

    Article  CAS  PubMed  Google Scholar 

  46. Chappell D, Heindl B, Jacob M, Annecke T, Congong C, Rehm M et al (2011) Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology 115:483–491

    Article  CAS  PubMed  Google Scholar 

  47. Assaad S, Popescu W, Perrino A (2013) Fluid management in thoracic surgery. Curr Opin Anaesthesiol 26(1):31–39

    Article  PubMed  Google Scholar 

  48. Downs CA, Kriener LH, Yu L, Eaton DC, Jain L, Helms MN (2012) β-Adrenergic agonists differentially regulate highly selective and nonselective epithelial sodium channels to promote alveolar fluid clearance in vivo. Am J Physiol Lung Cell Mol Physiol 302(11):L1167–L1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Slinger P (2002) Fluid management during pulmonary resection surgery. Ann Card Anaesth 5(2):220–224

    PubMed  Google Scholar 

  50. Zarins CK, Rice CL, Peters RM, Virgilio RW (1978) Lymph and pulmonary response to isobaric reduction in plasma oncotic pressure in baboons. Circ Res 43(6):925–930

    Article  CAS  PubMed  Google Scholar 

  51. Nohl-Oser HC (1972) An investigation of the anatomy of the lymphatic drainage of the lungs as shown by the lymphatic spread of bronchial carcinoma. Ann R Coll Surg Engl 51(3):157–176

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Laine GA, Allen SJ, Katz J, Gabel JC, Drake RE (1986) Effect of systemic venous pressure elevation on lymph flow and lung edema formation. J Appl Physiol 61(5):1634–1638

    CAS  PubMed  Google Scholar 

  53. Pedoto A, Amar D (2009) Right heart function in thoracic surgery: role of echocardiography. Curr Opin Anaesthesiol 22(1):44–49

    Article  PubMed  Google Scholar 

  54. Reed CE, Dorman BH, Spinale FG (1996) Mechanisms of right ventricular dysfunction after pulmonary resection. Ann Thorac Surg 62(1):225–231

    Article  CAS  PubMed  Google Scholar 

  55. Okada M, Ota T, Matsuda H, Okada K, Ishii N (1994) Right ventricular dysfunction after major pulmonary resection. J Thorac Cardiovasc Surg 108(3):503–511

    CAS  PubMed  Google Scholar 

  56. Ishikawa S, Griesdale DEG, Lohser J (2012) Acute kidney injury after lung resection surgery: incidence and perioperative risk factors. Anesth Analg 114(6):1256–1262

    Article  PubMed  Google Scholar 

  57. Licker M, Cartier V, Robert J, Diaper J, Villiger Y, Tschopp J-M et al (2011) Risk factors of acute kidney injury according to RIFLE criteria after lung cancer surgery. Ann Thorac Surg 91(3):844–850

    Article  PubMed  Google Scholar 

  58. Shires T, Williams J, Brown F (1961) Acute change in extracellular fluids associated with major surgical procedures. Ann Surg 154:803–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M (2008) A rational approach to perioperative fluid management. Anesthesiology 109(4):723–740

    Article  PubMed  Google Scholar 

  60. Brandstrup B, Svensen C, Engquist A (2006) Hemorrhage and operation cause a contraction of the extracellular space needing replacement—evidence and implications? A systematic review. Surgery 139(3):419–432

    Article  PubMed  Google Scholar 

  61. Wei S, Tian J, Song X, Chen Y (2008) Association of perioperative fluid balance and adverse surgical outcomes in esophageal cancer and esophagogastric junction cancer. Ann Thorac Surg 86(1):266–272

    Article  PubMed  Google Scholar 

  62. Kita T, Mammoto T, Kishi Y (2002) Fluid management and postoperative respiratory disturbances in patients with transthoracic esophagectomy for carcinoma. J Clin Anesth 14(4):252–256

    Article  PubMed  Google Scholar 

  63. Neal JM, Wilcox RT, Allen HW, Low DE (2003) Near-total esophagectomy: the influence of standardized multimodal management and intraoperative fluid restriction. Reg Anesth Pain Med 28(4):328–334

    PubMed  Google Scholar 

  64. Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359:1812–1818

    Article  PubMed  Google Scholar 

  65. Brandstrup B, Tønnesen H, Beier-Holgersen R, Hjortsø E, Ørding H, Lindorff-Larsen K et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238(5):641–648

    Article  PubMed  PubMed Central  Google Scholar 

  66. Marjanovic G, Villain C, Juettner E, Hausen Zur A, Hoeppner J, Hopt UT et al (2009) Impact of different crystalloid volume regimes on intestinal anastomotic stability. Ann Surg 249(2):181–185

    Article  PubMed  Google Scholar 

  67. Schnüriger B, Inaba K, Wu T, Eberle BM, Belzberg H, Demetriades D (2011) Crystalloids after primary colon resection and anastomosis at initial trauma laparotomy: excessive volumes are associated with anastomotic leakage. J Trauma 70(3):603–610

    Article  PubMed  Google Scholar 

  68. Theodorou D, Drimousis PG, Larentzakis A, Papalois A, Toutouzas KG, Katsaragakis S (2008) The effects of vasopressors on perfusion of gastric graft after esophagectomy. An experimental study. J Gastrointest Surg 12(9):1497–1501

    Article  PubMed  Google Scholar 

  69. Al-Rawi OY, Pennefather SH, Page RD, Dave I, Russell GN (2008) The effect of thoracic epidural bupivacaine and an intravenous adrenaline infusion on gastric tube blood flow during esophagectomy. Anesth Analg 106(3):884–887

    Article  CAS  PubMed  Google Scholar 

  70. Pathak D, Pennefather SH, Russell GN, Rawi Al O, Dave IC, Gilby S et al (2013) Phenylephrine infusion improves blood flow to the stomach during oesophagectomy in the presence of a thoracic epidural analgesia. Eur J Cardiothorac Surg 44(1):130–133

    Article  PubMed  Google Scholar 

  71. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94(6):1176–1186

    Article  CAS  PubMed  Google Scholar 

  72. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N (2011) Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care 15(3):R154

    Article  PubMed  PubMed Central  Google Scholar 

  73. Corcoran T, Rhodes JEJ, Clarke S, Myles PS, Ho KM (2012) Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg 114(3):640–651

    Article  PubMed  Google Scholar 

  74. Arulkumaran N, Corredor C, Hamilton MA, Ball J, Grounds RM, Rhodes A et al (2014) Cardiac complications associated with goal-directed therapy in high-risk surgical patients: a meta-analysis. Br J Anaesth 112(4):648–659

    Article  CAS  PubMed  Google Scholar 

  75. Bisgaard J, Gilsaa T, Rønholm E, Toft P (2013) Optimising stroke volume and oxygen delivery in abdominal aortic surgery: a randomised controlled trial. Acta Anaesthesiol Scand 57(2):178–188

    Article  CAS  PubMed  Google Scholar 

  76. Challand C, Struthers R, Sneyd JR, Erasmus PD, Mellor N, Hosie KB et al (2012) Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth 108(1):53–62

    Article  CAS  PubMed  Google Scholar 

  77. Rocca Della G, Costa MG (2003) Preload indexes in thoracic anesthesia. Curr Opin Anaesthesiol 16:69–73

    Article  Google Scholar 

  78. Goepfert MSG, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33(1):96–103

    Article  PubMed  Google Scholar 

  79. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E (2010) Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care 14:R118

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lopes MR, Oliveira MA, Pereira VOS, Lemos IPB, Auler JOC, Michard F (2007) Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 11(5):R100

    Article  PubMed  PubMed Central  Google Scholar 

  81. Diaper J, Ellenberger C, Villiger Y, Robert J, Tschopp J-M, Licker M (2008) Transoesophageal Doppler monitoring for fluid and hemodynamic treatment during lung surgery. J Clin Monit Comput 22(5):367–374

    Article  PubMed  Google Scholar 

  82. Wyffels PAH, Sergeant P, Wouters PF (2010) The value of pulse pressure and stroke volume variation as predictors of fluid responsiveness during open chest surgery. Anaesthesia 65(7):704–709

    Article  CAS  PubMed  Google Scholar 

  83. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37(9):2642–2647

    Article  PubMed  Google Scholar 

  84. Marik PE, Lemson J (2014) Fluid responsiveness: an evolution of our understanding. Br J Anaesth 112:617–620

    Article  CAS  PubMed  Google Scholar 

  85. Suehiro K, Okutani R (2011) Influence of tidal volume for stroke volume variation to predict fluid responsiveness in patients undergoing one-lung ventilation. J Anesth 25(5):777–780

    Article  PubMed  Google Scholar 

  86. Zhang J, Chen CQ, Lei XZ, Feng ZY, Zhu SM (2013) Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study. Clinics (Sao Paulo) 68(7):1065–1070

    Article  Google Scholar 

  87. Kobayashi M, Koh M, Irinoda T, Meguro E, Hayakawa Y, Takagane A (2009) Stroke volume variation as a predictor of intravascular volume depression and possible hypotension during the early postoperative period after esophagectomy. Ann Surg Oncol 16(5):1371–1377

    Article  PubMed  Google Scholar 

  88. Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32(7):1550–1554

    Article  PubMed  Google Scholar 

  89. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122(6):2080–2086

    Article  PubMed  Google Scholar 

  90. Oshima K, Kunimoto F, Hinohara H, Hayashi Y, Kanemaru Y, Takeyoshi I et al (2008) Evaluation of respiratory status in patients after thoracic esophagectomy using PiCCO system. Ann Thorac Cardiovasc Surg 14(5):283–288

    PubMed  Google Scholar 

  91. Sato Y, Motoyama S, Maruyama K, Okuyama M, Hayashi K, Nakae H et al (2007) Extravascular lung water measured using single transpulmonary thermodilution reflects perioperative pulmonary edema induced by esophagectomy. Eur Surg Res 39(1):7–13

    Article  CAS  PubMed  Google Scholar 

  92. Michard F (2007) Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med 35(4):1186–1192

    Article  PubMed  Google Scholar 

  93. Naidu BV, Dronavalli VB, Rajesh PB (2009) Measuring lung water following major lung resection. Interact Cardiovasc Thorac Surg 8(5):503–506

    Article  PubMed  Google Scholar 

  94. Haas S, Eichhorn V, Hasbach T, Trepte C, Kutup A, Goetz AE et al (2012) Goal-directed fluid therapy using stroke volume variation does not result in pulmonary fluid overload in thoracic surgery requiring one-lung ventilation. Crit Care Res Pract 2012:1–8

    Google Scholar 

  95. Lichtenstein DA, Meziere GA (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 134:118–125

    Article  Google Scholar 

  96. Anderson KL, Fields JM, Panebianco NL, Jenq KY, Marin J, Dean AJ (2013) Inter-rater reliability of quantifying pleural B-lines using multiple counting methods. J Ultrasound Med 32(1):115–120

    Article  PubMed  Google Scholar 

  97. Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A et al (2005) “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest 127(5):1690–1695

    Article  PubMed  Google Scholar 

  98. Bataille B, Rao G, Cocquet P, Mora M, Masson B, Ginot J et al (2015) Accuracy of ultrasound B-lines score and E/Ea ratio to estimate extravascular lung water and its variations in patients with acute respiratory distress syndrome. J Clin Monit Comput 29:169–176

    Article  PubMed  Google Scholar 

  99. Corradi F, Brusasco C, Pelosi P (2014) Chest ultrasound in acute respiratory distress syndrome. Curr Opin Crit Care 20(1):98–103

    Article  PubMed  Google Scholar 

  100. Verheij J (2005) Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth 96(1):21–30

    Article  PubMed  Google Scholar 

  101. Huang C-C, Kao K-C, Hsu K-H, Ko H-W, Li L-F, Hsieh M-J et al (2009) Effects of hydroxyethyl starch resuscitation on extravascular lung water and pulmonary permeability in sepsis-related acute respiratory distress syndrome. Crit Care Med 37(6):1948–1955

    Article  CAS  PubMed  Google Scholar 

  102. Margarido CB, Margarido NF, Otsuki DA, Fantoni DT, Marumo CK, Kitahara FR et al (2007) Pulmonary function is better preserved in pigs when acute normovolemic hemodilution is achieved with hydroxyethyl starch versus lactated Ringer’s solution. Shock 27(4):390–396

    Article  CAS  PubMed  Google Scholar 

  103. Li L-F, Huang C-C, Liu Y-Y, Lin H-C, Kao K-C, Yang C-T et al (2011) Hydroxyethyl starch reduces high stretch ventilation-augmented lung injury via vascular endothelial growth factor. Transl Res 157(5):293–305

    Article  CAS  PubMed  Google Scholar 

  104. Perel P, Roberts I (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 28:CD000567

    Google Scholar 

  105. Perner A, Haase N, Guttormsen AB (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134

    Article  CAS  PubMed  Google Scholar 

  106. Zarychanski R, Abou-Setta AM, Turgeon AF (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309:678–688

    Article  CAS  PubMed  Google Scholar 

  107. Lange M, Ertmer C, Van Aken H (2011) Intravascular volume therapy with colloids in cardiac surgery. J Cardiothorac Vasc Anesth 25:847–855

    Article  PubMed  Google Scholar 

  108. Finfer S, Bellomo R, Boyce N, French J, Myburgh J (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  CAS  PubMed  Google Scholar 

  109. Uhlig C, Silva PL, Deckert S, Schmitt J, de Abreu MG (2014) Albumin versus crystalloid solutions in patients with the acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care 18(2):R10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Slinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashes, C., Slinger, P. (2017). Fluid Management During and After the Operation: Less Is More or More Is Less?. In: Şentürk, M., Orhan Sungur, M. (eds) Postoperative Care in Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-19908-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19908-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19907-8

  • Online ISBN: 978-3-319-19908-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics