Skip to main content

Do the New Hemodynamic Monitoring Devices Make Sense Compared to the “Classical” Ones?

  • Chapter
  • First Online:
Postoperative Care in Thoracic Surgery

Abstract

The new hemodynamic monitoring systems offer anesthesiologists a useful guide in determining fluid status of the postthoracotomy. However, as with any monitoring, understanding the limitations of these systems as well as good interpretation is crucial. Furthermore, less invasive techniques are easy to use and can improve patient outcomes when used in a protocol-based manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA (2008) An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372:139–144

    Article  PubMed  Google Scholar 

  2. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM (2008) Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia 63:695–700

    Article  CAS  PubMed  Google Scholar 

  3. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED (2006) Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care 10:R81

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lobo SM, de Oliveira NE (2013) Clinical review: what are the best hemodynamic targets for noncardiac surgical patients? Crit Care 17:210

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ (2005) Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg 242:326–341

    PubMed  PubMed Central  Google Scholar 

  6. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402

    Article  PubMed  Google Scholar 

  7. Gurgel ST, do Nascimento P Jr (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112:1384–1391

    Article  PubMed  Google Scholar 

  8. Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, Hamilton M, Rhodes A (2013) Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care 17:209

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jhanji S, Lee C, Watson D, Hinds C, Pearse RM (2009) Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med 35:671–677

    Article  PubMed  Google Scholar 

  10. Marjanovic G, Villain C, Juettner E, Zur Hausen A, Hoeppner J, Hopt UT, Drognitz O, Obermaier R (2009) Impact of different crystalloid volume regimes on intestinal anastomotic stability. Ann Surg 249:181–185

    Article  PubMed  Google Scholar 

  11. Kulemann B, Timme S, Seifert G, Holzner PA, Glatz T, Sick O, Chikhladze S, Bronsert P, Hoeppner J, Werner M, Hopt UT, Marjanovic G (2013) Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomoses-a histomorphological analysis. Surgery 154:596–603

    Article  PubMed  Google Scholar 

  12. Nessim C, Sideris L, Turcotte S, Vafiadis P, Lapostole AC, Simard S, Koch P, Fortier LP, Dube P (2013) The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J Surg Res 183:567–573

    Article  PubMed  Google Scholar 

  13. Pizov R, Eden A, Bystritski D, Kalina E, Tamir A, Gelman S (2012) Hypotension during gradual blood loss: waveform variables response and absence of tachycardia. Br J Anaesth 109:911–918

    Article  CAS  PubMed  Google Scholar 

  14. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M (2011) Clinical review: update on hemodynamic monitoring–a consensus of 16. Crit Care 15:229

    Article  PubMed  PubMed Central  Google Scholar 

  15. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D (2013) Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 17:R278

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    Article  PubMed  Google Scholar 

  17. Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337

    Article  PubMed  Google Scholar 

  18. Thiele RH, Bartels K, Gan TJ (2015) Cardiac output monitoring: a contemporary assessment and review. Crit Care Med 43:177–185

    Article  PubMed  Google Scholar 

  19. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A (2011) Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care 15:R197

    Article  PubMed  PubMed Central  Google Scholar 

  20. Repesse X, Bodson L, Vieillard-Baron A (2013) Doppler echocardiography in shocked patients. Curr Opin Crit Care 19:221–227

    Article  PubMed  Google Scholar 

  21. Maltais S, Costello WT, Billings FT, Bick JS, Byrne JG, Ahmad RM, Wagner CE (2013) Episodic monoplane transesophageal echocardiography impacts postoperative management of the cardiac surgery patient. J Cardiothorac Vasc Anesth 27:665–669

    Article  PubMed  Google Scholar 

  22. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28:256–264

    Article  PubMed  Google Scholar 

  23. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366:472–477

    Article  PubMed  Google Scholar 

  24. Harvey S, Young D, Brampton W, Cooper AB, Doig G, Sibbald W, Rowan K (2006) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 28:CD003408

    Google Scholar 

  25. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294:1664–1670

    Article  CAS  PubMed  Google Scholar 

  26. Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J (2008) The pulmonary artery catheter: in medio virtus. Crit Care Med 36:3093–3096

    Article  PubMed  Google Scholar 

  27. Vincent JL (2012) The pulmonary artery catheter. J Clin Monit Comput 26:341–345

    Article  PubMed  Google Scholar 

  28. Gardner RM (1981) Direct blood pressure measurement – dynamic response requirements. Anesthesiology 54:227–236

    Article  CAS  PubMed  Google Scholar 

  29. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL (2008) Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med 36:434–440

    Article  PubMed  Google Scholar 

  30. Oren-Grinberg A (2010) The PiCCO monitor. Int Anesthesiol Clin 48:57–85

    Article  PubMed  Google Scholar 

  31. Bendjelid K, Marx G, Kiefer N, Simon TP, Geisen M, Hoeft A, Siegenthaler N, Hofer CK (2013) Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients. Br J Anaesth 111:573–579

    Article  CAS  PubMed  Google Scholar 

  32. Cecconi M, Fawcett J, Grounds RM, Rhodes A (2008) A prospective study to evaluate the accuracy of pulse power analysis to monitor cardiac output in critically ill patients. BMC Anesthesiol 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cecconi M, Dawson D, Grounds RM, Rhodes A (2009) Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med 35:498–504

    Article  CAS  PubMed  Google Scholar 

  34. Senn A, Button D, Zollinger A, Hofer CK (2009) Assessment of cardiac output changes using a modified FloTrac/Vigileo algorithm in cardiac surgery patients. Crit Care 13:R32

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cecconi M, Fasano N, Langiano N, Divella M, Costa MG, Rhodes A, Della Rocca G (2011) Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 15:R132

    Article  PubMed  PubMed Central  Google Scholar 

  36. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  CAS  PubMed  Google Scholar 

  37. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM (2009) Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies – with specific reference to the measurement of cardiac output. Crit Care 13:201

    Article  PubMed  PubMed Central  Google Scholar 

  38. Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD (2009) Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med 35:1801–1808

    Article  PubMed  Google Scholar 

  39. Critchley LA, Lee A, Ho AM (2010) A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg 111:1180–1192

    Article  PubMed  Google Scholar 

  40. Vincent JL, Pelosi P, Pearse R, Payen D, Perel A, Hoeft A, Romagnoli S, Ranieri VM, Ichai C, Forget P, Rocca GD, Rhodes A (2015) Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care 19(1):224

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reeves ST, Finley AC, Skubas NJ et al (2013) Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg 117(3):543e58

    Article  Google Scholar 

  42. Poth JM, Beck DR, Bartels K (2014) Ultrasonography for haemodynamic monitoring. Best Pract Res Clin Anaesthesiol 28:337e351

    Article  Google Scholar 

  43. Navarro LH, Bloomstone JA, Auler JO Jr, Cannesson M, Rocca GD, Gan TJ, Kinsky M, Magder S, Miller TE, Mythen M, Perel A, Reuter DA, Pinsky MR, Kramer GC (2015) Perioperative fluid therapy: a statement from the international fluid optimization group. Perioper Med (Lond) 4:3

    Article  Google Scholar 

  44. Perel A, Habicher M, Sander M (2013) Bench-to-bedside review: functional hemodynamics during surgery – should it be used for all high-risk cases? Crit Care 17:203

    Article  PubMed  PubMed Central  Google Scholar 

  45. Desebbe O, Cannesson M (2008) Using ventilation-induced plethysmographic variations to optimize patient fluid status. Curr Opin Anaesthesiol 21:772–778

    Article  PubMed  Google Scholar 

  46. Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M (2012) Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med 38:1429–1437

    Article  PubMed  Google Scholar 

  47. Forget P, Lois F, de Kock M (2010) Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg 111:910–914

    PubMed  Google Scholar 

  48. Forget P, Lois F, Kartheuser A, Leonard D, Remue C, de Kock M (2013) The concept of titration can be transposed to fluid management. But does is change the volumes? Randomised trial on pleth variability index during fast-track colonic surgery. Curr Clin Pharmacol 8:110–114

    Article  CAS  PubMed  Google Scholar 

  49. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, Veber B, Paugam-Burtz C, Jaber S, Ayham A, Zogheib E, Lasocki S, Vieillard-Baron A, Quintard H, Joannes-Boyau O, Plantefeve G, Montravers P, Duperret S, Lakhdari M, Ammenouche N, Lorne E, Slama M, Dupont H (2014) Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth 112:681–685

    Article  CAS  PubMed  Google Scholar 

  50. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  51. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S (2013) A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 369:428–437

    Article  CAS  PubMed  Google Scholar 

  52. Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, Damasceno MC, Schultz MJ (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 308:1651–1659

    Article  CAS  PubMed  Google Scholar 

  53. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B (2011) Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology 115:231–241

    Article  PubMed  Google Scholar 

  54. Monnet X, Teboul JL (2008) Passive leg raising. Intensive Care Med 34:659–663

    Article  PubMed  Google Scholar 

  55. Michard F (2014) Long live dynamic parameters! Crit Care 18:413

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U (2005) Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 103:249–257

    Article  PubMed  Google Scholar 

  57. Ho KM, Harding R, Chamberlain J, Bulsara M (2010) A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth 24:434–439

    Article  PubMed  Google Scholar 

  58. Collaborative Study Group on Perioperative ScvO2 Monitoring (2006) Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. Crit Care 10:R158

    Article  PubMed Central  Google Scholar 

  59. Perz S, Uhlig T, Kohl M, Bredle DL, Reinhart K, Bauer M, Kortgen A (2011) Low and “supranormal” central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med 37:52–59

    Article  CAS  PubMed  Google Scholar 

  60. Fuller BM, Dellinger RP (2012) Lactate as a hemodynamic marker in the critically ill. Curr Opin Crit Care 18:267–272

    Article  PubMed  PubMed Central  Google Scholar 

  61. Meregalli A, Oliveira RP, Friedman G (2004) Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care 8:R60–R65

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99:956–962

    Article  CAS  PubMed  Google Scholar 

  63. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 182:752–761

    Article  PubMed  Google Scholar 

  64. Jansen TC, van Bommel J, Woodward R, Mulder PG, Bakker J (2009) Association between blood lactate levels, sequential organ failure assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med 37:2369–2374

    Article  CAS  PubMed  Google Scholar 

  65. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bundgaard-Nielsen M, Holte K, Secher NH, Kehlet H (2007) Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand 51:331–340

    Article  CAS  PubMed  Google Scholar 

  68. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318:1099–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, Brienzi SL, de Oliveira GG (2000) Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med 28:3396–3404

    Article  CAS  PubMed  Google Scholar 

  70. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO Jr, Michard F (2007) Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 11:R100

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, Grocott MP, Ahern A, Griggs K, Scott R, Hinds C, Rowan K (2014) Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 311:2181–2190

    Article  CAS  PubMed  Google Scholar 

  72. Morris C (2013) Oesophageal Doppler monitoring, doubt and equipoise: evidence based medicine means change. Anaesthesia 68:684–688

    Article  CAS  PubMed  Google Scholar 

  73. Scheeren TW, Wiesenack C, Gerlach H, Marx G (2013) Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput 27:225–233

    Article  PubMed  Google Scholar 

  74. Goepfert MS, Richter HP, Zu EC, Gruetzmacher J, Rafflenbeul E, Roeher K, von Sandersleben A, Diedrichs S, Reichenspurner H, Goetz AE, Reuter DA (2013) Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology 119:824–836

    Article  CAS  PubMed  Google Scholar 

  75. Fellahi JL, Parienti JJ, Hanouz JL, Plaud B, Riou B, Ouattara A (2008) Perioperative use of dobutamine in cardiac surgery and adverse cardiac outcome: propensity-adjusted analyses. Anesthesiology 108:979–987

    Article  CAS  PubMed  Google Scholar 

  76. Pearse RM, Belsey JD, Cole JN, Bennett ED (2008) Effect of dopexamine infusion on mortality following major surgery: individual patient data meta-regression analysis of published clinical trials. Crit Care Med 36:1323–1329

    Article  CAS  PubMed  Google Scholar 

  77. Takala J, Meier-Hellmann A, Eddleston J, Hulstaert P, Sramek V (2000) Effect of dopexamine on outcome after major abdominal surgery: a prospective, randomized, controlled multicenter study. European Multicenter Study Group on Dopexamine in Major Abdominal Surgery. Crit Care Med 28:3417–3423

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Della Roca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Della Roca, G. (2017). Do the New Hemodynamic Monitoring Devices Make Sense Compared to the “Classical” Ones?. In: Şentürk, M., Orhan Sungur, M. (eds) Postoperative Care in Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-19908-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19908-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19907-8

  • Online ISBN: 978-3-319-19908-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics