Skip to main content

Spatial trajectories and convergence to traveling fronts for bistable reaction-diffusion equations

  • Chapter

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 86))

Abstract

We consider the semilinear parabolic equation

$$\displaystyle\begin{array}{rcl} u_{t} = u_{xx} + f(u),\qquad x \in \mathbb{R},\ t > 0,& &{}\end{array}$$
(1)

where f is a bistable nonlinearity. It is well known that for a large class of initial data, the corresponding solutions converge to traveling fronts. We give a new proof of this classical result as well as some generalizations. Our proof uses a geometric method, which makes use of spatial trajectories \(\{(u(x,t),u_{x}(x,t)): x \in \mathbb{R}\}\) of solutions of (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Angenent, S.: The zeroset of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79–96 (1988)

    MATH  MathSciNet  Google Scholar 

  2. Aronson, D.G., Weinberger, H.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2(1), 125–160 (1997)

    MATH  Google Scholar 

  4. Chen, X.-Y.: A strong unique continuation theorem for parabolic equations. Math. Ann. 311, 603–630 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Du, Y., Matano, H.: Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J. Eur. Math. Soc. 12(2), 279–312 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fife, P.C., McLeod, J.B.: A phase plane discussion of convergence to travelling fronts for nonlinear diffusion. Arch. Rational Mech. Anal. 75, 281–314 (1980/1981)

    Google Scholar 

  8. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    MATH  Google Scholar 

  9. Matano, H., Ogiwara, T.: Monotonicity and convergence in order-preserving systems. Discret. Contin. Dyn. Syst. 5, 1–34 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Matano, H., Poláčik, P.: Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part i: a general quasiconvergence theorem and its consequences (in preparation)

    Google Scholar 

  11. Muratov, C.B., Novaga, M.: Global exponential convergence to variational traveling waves in cylinders. SIAM J. Math. Anal. 44, 293–315 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Risler, E.: Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 381–424 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Roquejoffre, J.-M.: Convergence to traveling waves for solutions of a class of semilinear parabolic equations. J. Differ. Equ. 108, 262–295 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Roquejoffre, J.-M.: Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 499–552 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs, vol. 140. American Mathematical Society, Providence, RI (1994)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF Grant DMS–1161923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Poláčik .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Djairo Guedes de Figueiredo on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poláčik, P. (2015). Spatial trajectories and convergence to traveling fronts for bistable reaction-diffusion equations. In: Nolasco de Carvalho, A., Ruf, B., Moreira dos Santos, E., Gossez, JP., Monari Soares, S., Cazenave, T. (eds) Contributions to Nonlinear Elliptic Equations and Systems. Progress in Nonlinear Differential Equations and Their Applications, vol 86. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19902-3_24

Download citation

Publish with us

Policies and ethics