Skip to main content

Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary

  • Chapter
Contributions to Nonlinear Elliptic Equations and Systems

Abstract

Let (M, g) be a smooth compact, n dimensional Riemannian manifold, n = 3, 4 with smooth n − 1 dimensional boundary ∂ M. We search for the positive solutions of the singularly perturbed Klein Gordon Maxwell Proca system with homogeneous Neumann boundary conditions or for the singularly perturbed Klein Gordon Maxwell system with mixed Dirichlet Neumann homogeneous boundary conditions. We prove that C 1 stable critical points of the mean curvature of the boundary generates H 1(M) solutions when the perturbation parameter \(\varepsilon\) is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations. Topol. Methods Nonlinear Anal. 35, 33–42 (2010)

    MATH  MathSciNet  Google Scholar 

  2. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14(4), 409–420 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Byeon, J., Park, J.: Singularly perturbed nonlinear elliptic problems on manifolds. Calc. Var. Partial Differ. Equ. 24(4), 459–477 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cassani, D.: Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell’s equations. Nonlinear Anal. 58(7–8), 733–747 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clapp, M., Ghimenti, M., Micheletti, A.M.: Semiclassical states for a static supercritical Klein-Gordon-Maxwell-Proca system on a closed riemannian manifold. http://arxiv.org/abs/1401.5406 (2013)

  6. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    MATH  MathSciNet  Google Scholar 

  7. D’Aprile, T., Wei, J.: Clustered solutions around harmonic centers to a coupled elliptic system. Ann. Inst. H. Poincaré Anal. Non Linéaire 226, 605–628 (2007)

    Article  MathSciNet  Google Scholar 

  8. d’Avenia, P., Pisani, L.: Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations. Electron. J. Differ. Equ. 26, 13 (2002)

    MathSciNet  Google Scholar 

  9. d’Avenia, P., Pisani, L., Siciliano, G.: Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems. Nonlinear Anal. 71(12), e1985–e1995 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. d’Avenia, P., Pisani, L., Siciliano, G.: Klein-Gordon-Maxwell systems in a bounded domain. Discret. Cont. Dyn. Syst. 26(1), 135–149 (2010)

    MATH  MathSciNet  Google Scholar 

  11. Druet, O., Hebey, E.: Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces. Commun. Contemp. Math. 12(5), 831–869 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. (2) 136(1), 1–50 (1992)

    Google Scholar 

  13. Ghimenti, M., Micheletti, A.M.: The role of the mean curvature of the boundary in a nonlinear elliptic problem on Riemannian manifolds. (2014) http://arxiv.org/abs/1410.8841

  14. Ghimenti, M., Micheletti, A.M.: Low energy solutions for singularly perturbed coupled nonlinear systems on a Riemannian manifold with boundary. Nonlinear Anal. 119, 315–329 (2015) http://arxiv.org/abs/1407.1182

  15. Ghimenti, M., Micheletti, A.M.: Nondegeneracy of critical points of the mean curvature of the boundary for Riemannian manifolds. J. Fixed Point Theory Appl. 14(1), 71–78 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ghimenti, M., Micheletti, A.M.: Number and profile of low energy solutions for singularly perturbed Klein-Gordon-Maxwell systems on a Riemannian manifold. J. Differ. Equ. 256(7), 2502–2525 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ghimenti, M., Micheletti, A.M., Pistoia, A.: The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds. Discret. Contin. Dyn. Syst. 34(6), 2535–2560 (2014)

    MATH  MathSciNet  Google Scholar 

  18. Hebey, E., Truong, T.T.: Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds. J. Reine Angew. Math. 667, 221–248 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Hebey, E., Wei, J.: Resonant states for the static Klein-Gordon-Maxwell-Proca system. Math. Res. Lett. 19(4), 953–967 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Micheletti, A.M., Pistoia, A.: The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 34(2), 233–265 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mugnai, D.: Coupled Klein-Gordon and Born-Infeld type equations: Looking for solitary waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 1519–1527 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Ghimenti was supported by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ghimenti .

Editor information

Editors and Affiliations

Appendix: Technical lemmas

Appendix: Technical lemmas

Lemma 5.1.

There exists \(\varepsilon _{0}> 0\) and c > 0 such that, for any \(\xi _{0} \in \partial M\) and for any \(\varepsilon \in (0,\varepsilon _{0})\) it holds

$$\displaystyle{ \left \Vert \frac{\partial } {\partial y_{h}}Z_{\varepsilon,\xi (y)}^{l}\right \Vert _{ \varepsilon } = O\left (\frac{1} {\varepsilon } \right ),\ \ \left \Vert \frac{\partial } {\partial y_{h}}W_{\varepsilon,\xi (y)}\right \Vert _{\varepsilon } = O\left (\frac{1} {\varepsilon } \right ), }$$
(38)

for \(h = 1,\ldots,n - 1\), \(l = 1,\ldots,n\)

Lemma 5.2.

Let us consider the functions

$$\displaystyle{\tilde{v}_{\varepsilon,\xi }(z) = \left \{\begin{array}{cl} \psi (W_{\varepsilon,\xi })\left (\varPsi _{\xi }^{\partial }(\varepsilon z)\right )&\text{ for }z \in D^{+}(R/\varepsilon )\\ \\ 0 &\text{ for }z \in \mathbb{R}^{3}\setminus D^{+}(R/\varepsilon ) \end{array} \right.}$$

where \(D^{+}(r/\varepsilon ) = \left \{z = (\bar{z},z_{n}),\ \bar{z} \in \mathbb{R}^{n-1},\vert \bar{z}\vert <r/\varepsilon,\ 0 \leq z_{n} <R/\varepsilon )\right \}\) . Then there exists a constant c > 0 such that

$$\displaystyle{\|\tilde{v}_{\varepsilon,\xi }(z)\|_{L^{2^{{\ast}}}(\mathbb{R}_{+}^{n})} \leq c\varepsilon ^{2}.}$$

Furthermore, take a sequence \(\varepsilon _{n} \rightarrow 0\) , up to subsequences, \(\left \{ \frac{1} {\varepsilon _{n}^{2}}\tilde{v}_{\varepsilon _{n},\xi }\right \}_{n}\) converges weakly in \(L^{2^{{\ast}} }(\mathbb{R}_{+}^{n})\) as \(\varepsilon\) goes to 0 to a function \(\gamma \in D^{1,2}(\mathbb{R}^{3})\) . The function γ solves, in a weak sense, the equation

$$\displaystyle{ -\varDelta \gamma = qU^{2}\text{ in }\mathbb{R}_{ +}^{n} }$$
(39)

Proof.

We prove the Lemma for Problem (1), being the Problem (2) completely analogous. By definition of \(\tilde{v}_{\varepsilon,\xi }(z)\) and by (1) we have, for all \(z \in D^{+}(r/\varepsilon )\),

$$\displaystyle\begin{array}{rcl} & & -\sum _{ij}\partial _{j}\left (\vert g_{\xi }(\varepsilon z)\vert ^{1/2}g_{\xi }^{ij}(\varepsilon z)\partial _{ i}\tilde{v}_{\varepsilon,\xi }(z)\right ) = \\ & & \qquad \qquad =\varepsilon ^{2}\vert g_{\xi }(\varepsilon z)\vert ^{1/2}\left \{qU^{2}(z)\chi _{ r}^{2}(\varepsilon z) -\left [1 + q^{2}U^{2}(z)\chi _{ R}^{2}(\varepsilon z)\right ]\tilde{v}_{\varepsilon,\xi }(z)\right \}{}\end{array}$$
(40)

By (40), and remarking that \(\tilde{v}_{\varepsilon,\xi }(z) \geq 0\) we have

$$\displaystyle\begin{array}{rcl} & & \|\tilde{v}_{\varepsilon,\xi }(z)\|_{D^{1,2}\left (D^{+}(r/\varepsilon )\right )}^{2} \leq C\int \limits _{ D^{+}(R/\varepsilon )}\vert g_{\xi }(\varepsilon z)\vert ^{1/2}g_{\xi }^{ij}(\varepsilon z)\partial _{ i}\tilde{v}_{\varepsilon,\xi }(z)\partial _{j}\tilde{v}_{\varepsilon,\xi }(z)dz {}\\ & & = C\varepsilon ^{2}\int \limits _{ D^{+}(R/\varepsilon )}\vert g_{\xi }(\varepsilon z)\vert ^{1/2}\left \{qU^{2}(z)\chi _{ R}^{2}(\varepsilon z)\tilde{v}_{\varepsilon,\xi }(z) -\left [1 + q^{2}U^{2}(z)\chi _{ R}^{2}(\varepsilon z)\right ]\tilde{v}_{\varepsilon,\xi }^{2}(z)\right \}dz {}\\ & & \leq C\varepsilon ^{2}\int \limits _{ D^{+}(R/\varepsilon )}\vert g_{\xi }(\varepsilon z)\vert ^{1/2}qU^{2}(z)\chi _{ R}^{2}(\varepsilon \vert z\vert )\tilde{v}_{\varepsilon,\xi }(z)dz {}\\ & & \leq C\varepsilon ^{2}\|\tilde{v}_{\varepsilon,\xi }(z)\|_{L^{2^{{\ast}}}\left (D^{+}(R/\varepsilon )\right )}\|U\|_{ L^{ \frac{4n} {n+2} }}^{2} \leq C\varepsilon ^{2}\|\tilde{v}_{\varepsilon,\xi }(z)\|_{D^{1,2}\left (D^{+}(R/\varepsilon )\right )} {}\\ \end{array}$$

Thus we have

$$\displaystyle{ \|\tilde{v}_{\varepsilon,\xi }(z)\|_{D^{1,2}\left (D^{+}(R/\varepsilon )\right )} \leq C\varepsilon ^{2}\text{ and }\vert \tilde{v}_{\varepsilon,\xi }(z)\vert _{L^{2^{{\ast}}}(\mathbb{R}_{ +}^{n})} \leq C\varepsilon ^{2}. }$$
(41)

By (41), if \(\varepsilon _{n}\) is a sequence which goes to zero, the sequence \(\left \{ \frac{1} {\varepsilon _{n}^{2}} \tilde{v}_{\varepsilon _{n},\xi }\right \}_{n}\) is bounded in \(L^{2^{{\ast}} }(\mathbb{R}_{+}^{n})\). Then, up to subsequence, \(\left \{ \frac{1} {\varepsilon _{n}^{2}} \tilde{v}_{\varepsilon _{n},\xi }\right \}_{n}\) converges to some \(\tilde{\gamma }\in L^{2^{{\ast}} }(\mathbb{R}_{+}^{n})\) weakly in \(L^{2^{{\ast}} }(\mathbb{R}_{+}^{n})\).

Moreover, by (40), for any \(\varphi \in C_{0}^{\infty }(\mathbb{R}_{+}^{n})\), it holds

$$\displaystyle\begin{array}{rcl} & & \int \limits _{\text{supp }\varphi }\sum _{ij}\vert g_{\xi }(\varepsilon z)\vert ^{1/2}g_{\xi }^{ij}(\varepsilon z)\partial _{ i}\frac{\tilde{v}_{\varepsilon,\xi }(z)} {\varepsilon _{n}^{2}} \partial _{j}\varphi (z)dz = \\ & & \int \limits _{\text{supp }\varphi }\left \{qU^{2}(z)\chi _{ r}^{2}(\varepsilon \vert z\vert ) -\left [1 + q^{2}U^{2}(z)\chi _{ R}^{2}(\varepsilon z)\right ]\tilde{v}_{\varepsilon,\xi }(z)\right \}\vert g_{\xi }(\varepsilon z)\vert ^{1/2}\varphi (z)dz.{}\end{array}$$
(42)

Consider now the functions

$$\displaystyle{v_{\varepsilon,\xi }(z):=\psi (W_{\varepsilon,\xi })\left (\varPsi _{\xi }^{\partial }(\varepsilon z)\right )\chi _{ R}(\varepsilon z) =\tilde{ v}_{\varepsilon,\xi }(z)\chi _{r}(\varepsilon z)\text{ for }z \in \mathbb{R}_{+}^{n}.}$$

We have immediately that \(v_{\varepsilon,\xi }(z)\) is bounded in \(D^{1,2}(\mathbb{R}_{+}^{n})\), thus the sequence \(\left \{ \frac{1} {\varepsilon _{n}^{2}} v_{\varepsilon _{n},\xi }\right \}_{n}\) converges to some \(\gamma \in D^{1,2}(\mathbb{R}^{3})\) weakly in \(D^{1,2}(\mathbb{R}_{+}^{n})\) and in \(L^{2^{{\ast}} }(\mathbb{R}_{+}^{n})\). Finally, for any compact set \(K \subset \mathbb{R}_{+}^{n}\) eventually \(v_{\varepsilon _{n},\xi } \equiv \tilde{ v}_{\varepsilon _{n},\xi }\) on K. So it is easy to see that \(\tilde{\gamma }=\gamma\).

We recall that \(\vert g_{\xi }(\varepsilon z)\vert ^{1/2} = 1 + O(\varepsilon \vert z\vert )\) and \(g_{\xi }^{ij}(\varepsilon z) =\delta _{ij} + O(\varepsilon \vert z\vert )\) so, by the weak convergence of \(\left \{ \frac{1} {\varepsilon _{n}^{2}} v_{\varepsilon _{n},\xi }\right \}_{n}\) in \(D^{1,2}(\mathbb{R}_{+}^{n})\), for any \(\varphi \in C_{0}^{\infty }(\mathbb{R}_{+}^{n})\) we get

$$\displaystyle\begin{array}{rcl} & & \int \limits _{\text{supp }\varphi }\sum _{ij}\vert g_{\xi }(\varepsilon _{n}z)\vert ^{1/2}g_{\xi }^{ij}(\varepsilon _{ n}z)\partial _{i}\frac{\tilde{v}_{\varepsilon _{n},\xi }(z)} {\varepsilon _{n}^{2}} \partial _{j}\varphi (z)dz \\ & & \qquad \qquad \qquad \ \ =\int \limits _{\text{supp }\varphi }\sum _{ij}\vert g_{\xi }(\varepsilon _{n}z)\vert ^{1/2}g_{\xi }^{ij}(\varepsilon _{ n}z)\partial _{i}\frac{v_{\varepsilon _{n},\xi }(z)} {\varepsilon _{n}^{2}} \partial _{j}\varphi (z)dz \\ & & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ \rightarrow \int \limits _{\mathbb{R}^{3}}\sum _{i}\partial _{i}\gamma (z)\partial _{i}\varphi (z)dz\text{ as }n \rightarrow \infty. {}\end{array}$$
(43)

Thus by (42) and by (43) and because \(\left \{ \frac{1} {\varepsilon _{n}^{2}} \tilde{v}_{\varepsilon _{n},\xi }\right \}_{n}\) converges to γ weakly in \(L^{2^{{\ast}} }(\mathbb{R}_{+}^{n})\) we get

$$\displaystyle{\int \limits _{\mathbb{R}_{+}^{n}}\sum _{i}\partial _{i}\gamma (z)\partial _{i}\varphi (z)dz = q\int \limits _{\mathbb{R}_{+}^{n}}U^{2}(z)\varphi (z)dz\text{ for all }\varphi \in C_{ 0}^{\infty }(\mathbb{R}_{ +}^{n}).}$$

So, finally, up to subsequences, \(\left \{ \frac{1} {\varepsilon _{n}^{2}}\tilde{v}_{\varepsilon _{n},\xi }\right \}_{n}\) converges to γ, weakly in \(L^{2^{{\ast}} }(\mathbb{R}_{+}^{n})\) and the function \(\gamma \in D^{1,2}(\mathbb{R}_{+}^{n})\) is a weak solution of −Δ γ = qU 2 in \(\mathbb{R}_{+}^{n}\). □ 

Remark 5.3.

We remark that γ is positive and decays exponentially at infinity with its first derivative because it solves \(-\varDelta \gamma = qU^{2}\) in \(\mathbb{R}_{+}^{n}\). Moreover it is symmetric with respect to the first n − 1 variables.

Definition 5.4.

Let \(\xi _{0} \in \partial M\). We introduce the functions \(\mathcal{E}\) and \(\tilde{\mathcal{E}}\) as follows.

$$\displaystyle{\mathcal{E}(y,x) = \left (\exp _{\xi (y)}^{\partial }\right )^{-1}(x) = \left (\exp _{\exp _{\xi _{ 0}}^{\partial }y}^{\partial }\right )^{-1}(\exp _{\xi _{ 0}}^{\partial }\bar{\eta }) =\tilde{ \mathcal{E}}(y,\bar{\eta })}$$

where \(x,\xi (y) \in \partial M\), \(y,\bar{\eta }\in B(0,R) \subset \mathbb{R}^{n-1}\) and \(\xi (y) =\exp _{ \xi _{0}}^{\partial }y\), \(x =\exp _{ \xi _{0}}^{\partial }\bar{\eta }\). Using Fermi coordinates, in a similar way we define

$$\displaystyle{\mathcal{H}(y,x) = \left (\psi _{\xi (y)}^{\partial }\right )^{-1}(x) = \left (\psi _{\exp _{\xi _{ 0}}^{\partial }y}^{\partial }\right )^{-1}\left (\psi _{\xi _{ 0}}^{\partial }(\bar{\eta },\eta _{ n})\right ) =\tilde{ \mathcal{H}}(y,\bar{\eta },\eta _{n}) = (\tilde{\mathcal{E}}(y,\bar{\eta }),\eta _{n})}$$

where x ∈ M, \(\eta = (\bar{\eta },\eta _{n})\), with \(\bar{\eta }\in B(0,R) \subset \mathbb{R}^{n-1}\) and 0 ≤ η n  < R, \(\xi (y) =\exp _{ \xi _{0}}^{\partial }y \in \partial M\) and \(x =\psi _{ \xi _{0}}^{\partial }(\eta )\).

Lemma 5.5.

It holds

$$\displaystyle{\frac{\partial \tilde{\mathcal{E}}_{k}} {\partial y_{j}} (0,0) = -\delta _{jk}\text{ for }j,k = 1,\ldots,n - 1}$$

Proof.

We recall that \(\tilde{\mathcal{E}}(y,\bar{\eta }) = \left (\exp _{\xi (y)}^{\partial }\right )^{-1}(\exp _{\xi _{0}}^{\partial }\bar{\eta })\). Let us introduce, for \(y,\bar{\eta }\in B(0,R) \subset \mathbb{R}^{n-1}\)

$$\displaystyle\begin{array}{rcl} F(y,\bar{\eta })& =& \left (\exp _{\xi _{0}}^{\partial }\right )^{-1}\left (\exp _{\xi (y)}^{\partial }(\bar{\eta })\right ) {}\\ \varGamma (y,\bar{\eta })& =& \left (y,F(y,\bar{\eta })\right ). {}\\ \end{array}$$

We notice that \(\varGamma ^{-1} = (y,\tilde{\mathcal{E}}(y,\bar{\eta }))\). We can easily compute the derivative of Γ. We have

$$\displaystyle{\varGamma '(\hat{y},\hat{\eta })[\tilde{y},\tilde{\eta }] = \left (\begin{array}{cc} \text{Id}_{\mathbb{R}^{n-1}} & 0 \\ F_{y}'(\hat{y},\hat{\eta })&F_{\eta }'(\hat{y},\hat{\eta }) \end{array} \right )\left (\begin{array}{c} \tilde{y}\\ \tilde{\eta } \end{array} \right ),}$$

thus

$$\displaystyle{\left (\varGamma ^{-1}\right )^{{\prime}}(\hat{y},\hat{\eta })[\tilde{y},\tilde{\eta }] = \left (\begin{array}{cc} \text{Id}_{\mathbb{R}^{n-1}} & 0 \\ -\left (F_{\eta }'(\hat{y},\hat{\eta })\right )^{-1}F_{y}'(\hat{y},\hat{\eta })&\left (F_{\eta }'(\hat{y},\hat{\eta })\right )^{-1} \end{array} \right )\left (\begin{array}{c} \tilde{y}\\ \tilde{\eta } \end{array} \right )}$$

Now, by direct computation we have that

$$\displaystyle{F_{\eta }'(0,\hat{\eta }) = \text{Id}_{\mathbb{R}^{n-1}}\text{ and }F_{y}'(\hat{y},0) = \text{Id}_{\mathbb{R}^{n-1}},}$$

so \(\frac{\partial \tilde{\mathcal{E}}_{k}} {\partial y_{j}} (0,0) = \left (-\left (F_{\eta }'(0,0)\right )^{-1}F_{y}'(0,0)\right )_{jk} = -\delta _{jk}\). □ 

Lemma 5.6.

We have that

$$\displaystyle\begin{array}{rcl} \tilde{\mathcal{H}}(0,\bar{\eta },\eta _{n})& =& (\bar{\eta },\eta _{n})\text{ for }\bar{\eta } \in \mathbb{R}^{n-1},\eta _{ n} \in \mathbb{R}_{+} {}\\ \frac{\partial \tilde{\mathcal{H}}_{k}} {\partial y_{j}} (0,0,\eta _{n})& =& -\delta _{jk}\text{ for }j,k = 1,\ldots,n - 1,\eta _{n} \in \mathbb{R}_{+} {}\\ \frac{\partial \tilde{\mathcal{H}}_{n}} {\partial y_{j}} (y,\bar{\eta },\eta _{n})& =& 0\text{ for }j = 1,\ldots,n - 1,y,\bar{\eta }\in \mathbb{R}^{n-1},\eta _{ n} \in \mathbb{R}_{+} {}\\ \end{array}$$

Proof.

The first two claims follow immediately by Definition 5.4 and Lemma 5.5. For the last claim, observe that \(\tilde{\mathcal{H}}_{k}(y,\bar{\eta },\eta _{n}) =\tilde{ \mathcal{E}}_{k}(y,\bar{\eta })\) which does not depend on η n as well as its derivatives. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghimenti, M., Micheletti, A.M. (2015). Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary. In: Nolasco de Carvalho, A., Ruf, B., Moreira dos Santos, E., Gossez, JP., Monari Soares, S., Cazenave, T. (eds) Contributions to Nonlinear Elliptic Equations and Systems. Progress in Nonlinear Differential Equations and Their Applications, vol 86. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19902-3_19

Download citation

Publish with us

Policies and ethics