Skip to main content

Computational Intelligence Techniques for Determining Optimal Performance Trade‐Offs for RF Inductors

  • Chapter
  • First Online:
Computational Intelligence in Analog and Mixed-Signal (AMS) and Radio-Frequency (RF) Circuit Design

Abstract

The automatic synthesis of integrated inductors for radio frequency (RF) integrated circuits is one of the most challenging problems that RF designers have to face. In this chapter, computational intelligence techniques are applied to automatically obtain the optimal performance trade-offs of integrated inductors. A methodology is presented that combines a multi-objective evolutionary algorithm with electromagnetic simulation to get highly accurate results. A set of sized inductors is obtained showing the best performance trade-offs for a given technology. The methodology is illustrated with a complete set of examples where different inductor trade-offs are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, K., Allstot, D.J.: Parasitic-aware design and optimization of a CMOS RF power amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 53(1), 16–25 (2006). doi:10.1109/tcsi.2005.854608

    Article  MATH  Google Scholar 

  2. De Ranter, C.R.C., Van der Plas, G., Steyaert, M.S.J., Gielen, G.G.E., Sansen, W.M.C.: CYCLONE: automated design and layout of RF LC-oscillators. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(10), 1161–1170 (2002). doi:10.1109/tcad.2002.802267

    Article  Google Scholar 

  3. Hershenson, M.D.M., Hajimiri, A., Mohan, S.S., Boyd, S.P., Lee, T.H.: Design and optimization of LC oscillators. In: 1999 IEEE/ACM International Conference on Computer-Aided Design, pp. 65-69, 7–11 Nov 1999 (1999)

    Google Scholar 

  4. Nieuwoudt, A., Ragheb, T., Massoud, Y.: Narrow-band low-noise amplifier synthesis for high-performance system-on-chip design. Microelectron. J. 38(12), 1123–1134 (2007)

    Article  MATH  Google Scholar 

  5. Pereira, P., Fino, H., Ventim-Neves, M.: LC-VCO design methodology based on evolutionary algorithms. In: International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 189–192, 19–21 Sept 2012 (2012)

    Google Scholar 

  6. Ramos, J., Francken, K., Gielen, G.G.E., Steyaert, M.S.J.: An efficient, fully parasitic-aware power amplifier design optimization tool. IEEE Trans. Circuits Syst. I Regul. Pap. 52(8), 1526–1534 (2005). doi:10.1109/tcsi.2005.851677

    Article  Google Scholar 

  7. Ballicchia, M., Orcioni, S.: Design and modeling of optimum quality spiral inductors with regularization and Debye approximation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1669–1681 (2010)

    Article  Google Scholar 

  8. Hershenson, M.D.M., Mohan, S.S., Boyd, S.P., Lee, T.H.: Optimization of inductor circuits via geometric programming. In: Proceedings of 36th Design Automation Conference, pp. 994–998 (1999)

    Google Scholar 

  9. Liu, B., Zhao, D., Reynaert, P., Gielen, G.E.: Synthesis of integrated passive components for high-frequency RF ICs based on evolutionary computation and machine learning techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(10), 1458–1468 (2011)

    Article  Google Scholar 

  10. Mandal, S.K., Sural, S., Patra, A.: ANN- and PSO-based synthesis of on-chip spiral inductors for RF ICs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 188–192 (2008)

    Article  Google Scholar 

  11. Nieuwoudt, A., Massoud, Y.: Variability-aware multilevel integrated spiral inductor synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(12), 2613–2625 (2006)

    Article  Google Scholar 

  12. Niknejad, A.M., Meyer, R.G.: Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs. IEEE J. Solid-State Circuits 33(10), 1470–1481 (1998)

    Article  Google Scholar 

  13. Pereira, P., Helena Fino, M., Coito, F., Ventim-Neves, M.: RF integrated inductor modeling and its application to optimization-based design. Analog Integr. Circ. Sig. Process 73(1), 47–55 (2012). doi:10.1007/s10470-011-9682-x

  14. Talwalkar, N.A., Yue, C.P., Wong, S.S.: Analysis and synthesis of on-chip spiral inductors. IEEE Trans. Electron Dev. 52(2), 176–182 (2005)

    Article  Google Scholar 

  15. Yu, W., Bandler, J.W.: Optimization of spiral inductor on silicon using space mapping. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1085–1088, 11–16 June 2006

    Google Scholar 

  16. Zhan, Y., Sapatnekar, S.S.: Optimization of integrated spiral inductors using sequential quadratic programming. In: Proceedings Design, Automation and Test in Europe Conference and Exhibition, pp. 622–627, 16–20 Feb 2004

    Google Scholar 

  17. Jeong, S., Obayashi, S.: Efficient global optimization (EGO) for multi-objective problem and data mining. In: IEEE Congress on Evolutionary Computation, pp. 2138–2145, 2–5 Sept 2005

    Google Scholar 

  18. González-Echevarría, R., Castro-López, R., Roca, E., Fernández, F.V., Sieiro, J., Vidal, N., López-Villegas, J.M.: Automated generation of the optimal performance trade-offs of integrated inductors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1269–1273 (2014). doi:10.1109/TCAD.2014.2316092

    Article  Google Scholar 

  19. Fiorelli, R., Peralias, E.J., Silveira, F.: LC-VCO design optimization methodology based on the gm/ID ratio for nanometer CMOS technologies. IEEE Trans. Microw. Theory Tech. 59(7), 1822–1831 (2011). doi:10.1109/tmtt.2011.2132735

    Article  Google Scholar 

  20. Tulunay, G., Balkir, S.: A synthesis tool for CMOS RF low-noise amplifiers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(5), 977–982 (2008)

    Article  Google Scholar 

  21. Zhang, G., Dengi, A., Carley, L.R.: Automatic synthesis of a 2.1 GHz SiGe low noise amplifier. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 125–128 (2002)

    Google Scholar 

  22. Mohan, S.S., Hershenson, M.D.M., Boyd, S.P., Lee, T.H.: Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 34(10), 1419–1424 (1999)

    Article  Google Scholar 

  23. Kamon, M., Tsuk, M.J., White, J.K.: FASTHENRY: a multipole-accelerated 3-D inductance extraction program. IEEE Trans. Microw. Theory Tech. 42(9), 1750–1758 (1994). doi:10.1109/22.310584

    Article  Google Scholar 

  24. Carrasco, T., Sieiro, J., López-Villegas, J.M., Vidal, N., González-Echevarría, R., Roca, E.: Mixed-mode impedance and reflection coefficient of two-port devices. Prog. Electromagnet. Res. 130, 411–428 (2012). doi:10.2528/PIER12052906

    Article  Google Scholar 

  25. Bockelman, D.E., Eisenstadt, W.R.: Combined differential and common-mode scattering parameters: theory and simulation. IEEE Trans. Microw. Theory Tech. 43(7), 1530–1539 (1995). doi:10.1109/22.392911

    Article  Google Scholar 

  26. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  27. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  28. Fernández, F.V., Esteban-Muller, J., Roca, E., Castro-López, R.: Stopping criteria in evolutionary algorithms for multi-objective performance optimization of integrated inductors. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, 18–23 July 2010

    Google Scholar 

  29. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a Pareto front. In: Late breaking papers at the genetic programming 1998 conference, pp. 221–228 (1998)

    Google Scholar 

  30. Sanchez-Lopez, C., Castro-Lopez, R., Roca, E., Fernandez, F.V., Gonzalez-Echevarria, R., Esteban-Muller, J., Lopez-Villegas, J.M., Sieiro, J., Vidal, N.: A bottom-up approach to the systematic design of LNAs using evolutionary optimization. In: 2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD), pp. 1–5, 4–6 Oct 2010

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the TEC2013-45638-C3-3-R, TEC2010-14825, TEC2013-40430-R, and TEC2010-21484 projects, funded by the Spanish Ministry of Economy and Competitiveness and ERDF, by the P12-TIC-1481 project, funded by Junta de Andalucia, and by CSIC project PIE 201350E058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisenda Roca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roca, E. et al. (2015). Computational Intelligence Techniques for Determining Optimal Performance Trade‐Offs for RF Inductors. In: Fakhfakh, M., Tlelo-Cuautle, E., Siarry, P. (eds) Computational Intelligence in Analog and Mixed-Signal (AMS) and Radio-Frequency (RF) Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-319-19872-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19872-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19871-2

  • Online ISBN: 978-3-319-19872-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics