Advertisement

Quasi-Coordinates Based Dynamics Control Design for Constrained Systems

  • Elżbieta M. Jarzȩbowska
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 168)

Abstract

The paper presents model-based dynamics control design for constrained systems which exploits dynamics modeling in quasi-coordinates. These non-inertial coordinates are useful in motion description of constrained systems as well as in a controller design, since they offer many advantages in both areas. Specifically, a dynamics model formulation results in a reduced-state form of the motion equations. The selection of quasi-coordinates is arbitrary so they may satisfy the constraint equations and be control inputs directly. The paper presents an approach to control oriented modeling and a controller design based on the generalized Boltzmann-Hamel equations where the generalization refers to constraint kinds which may be put upon systems, i.e. constraints may be material or artificial like control constraints. The control design framework applies to fully actuated and underactuated systems and it is computationally efficient. Examples of controller designs and their comparisons to a traditional Lagrange model-based framework are presented.

Keywords

Program Constraint Nonholonomic System Nonholonomic Constraint Holonomic System Reference Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cameron, J.M., Book, W.J.: Modeling mechanisms with nonholonomic joints using the Boltzmann-Hamel equations Int. J. Robot. Res. 16(1), 47–59 (1997)CrossRefGoogle Scholar
  2. 2.
    Papastavridis, J.G.: On the Boltzmann-Hamel equations of motion: a vectorial treatment. J. Appl. Mech. 61, 453–459 (1994)MathSciNetCrossRefzbMATHADSGoogle Scholar
  3. 3.
    Jarzȩbowska, E.: Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. Nonlin. Anal. 16(16), 1741–1754 (2008)Google Scholar
  4. 4.
    Jarzȩbowska, E.: Model-Based Tracking Control of Nonlinear Systems. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  5. 5.
    Lewis, F., Dowson, D.M., Abdallah, C.T.: Robot Manipulator Control. Theory and Practice Marcel Dekker Inc., New York (2004)Google Scholar
  6. 6.
    Kwatny, H.G., Blankenship, G.L.: Nonlinear Control and Analytical Mechanics. Birkhauser, A Computational Approach. Boston (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bloch, A.M.: Nonholonomic mechanics and control. Interdisciplinary Applied Mathematics, vol. 24. Springer, New York (2003)Google Scholar
  8. 8.
    Crawford, L.S., Sastry, S.S.: Biological motor control approaches for a planar diver. In: Proceedings of the Conferenc Decision Control, pp. 3881–3886 (1995)Google Scholar
  9. 9.
    Koh, K.C., Cho, H.S.: A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints. J. Intell. Robot. Syst. 24, 367–385 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Scheuer, A., Laugier, Ch.: Planning sub-optimal and continuous-curvature paths for car-like robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 25–31 (1998)Google Scholar
  11. 11.
    Vafa.: Space manipulator motion with no satellite attitude disturbances. In: Proceedings of the IEEE International Conference Robotics and Automation, pp. 1770–1775 (1991)Google Scholar
  12. 12.
    Grioli, G.: Particular solutions in stereodynamics. Centro Intern. Matem. Estivo, Roma, 1–65 (1972)Google Scholar
  13. 13.
    Appell, P.: Exemple de mouvement d’un point assujetti a une liaison exprimée par une relation non linéaire entre les composantes de la vitesse. Comptes Rendus de l’Académie des Sciences, Paris 48–50, (1911)Google Scholar
  14. 14.
    Beghuin, H.: Cours de mécanique. Gauthier-Villars, Paris (1947)Google Scholar
  15. 15.
    Seifried, R.: Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design (Solid mechanics and its applications). Springer, New York (2013)zbMATHGoogle Scholar
  16. 16.
    Macfarlane, S., Croft, E.: Manipulator trajectory planning: design for real-time applications. IEEE Trans. Robot. Automat. 19(1), 42–51 (2003)CrossRefGoogle Scholar
  17. 17.
    Chee, W., Tomizuka, M., Patwardhan, S., et al.: Experimental study of lane change maneuver for AHS applications. Proc. Am. Control Conf. 1, 139–143 (1995)Google Scholar
  18. 18.
    Oriolo, G., De Luca, A., Vendittelli, M.: WMR control via dynamic feedback linearization: Design, implementation, and experimental validation. IEEE Trans. Contr. Systems Techn. 10(6), 835–852 (2002)CrossRefGoogle Scholar
  19. 19.
    Zotov, Y.K: Tomofeyev, A.V.: Controllability and stabilization of programmed motions of reversible mechanical and electromechanical systems. J. Appl. Math. Mech. 56(6), 873–880 (1992)Google Scholar
  20. 20.
    Zotov, Y.K.: Controllability and stabilization of programmed motions of an automobile-type transport robot. J. Appl. Maths. Mech. 67(3), 303–327 (2003)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Nejmark, J.I., Fufaev, N.A.: Dynamics of nonholonomic systems. Am. Math. Soc, Rhode Island (1972)Google Scholar
  22. 22.
    Divelbiss, A., Wen, J.T.: Trajectory tracking control of a car-trailer system. IEEE Trans. Cont. Systems Techn. 5, 269–278 (1997)CrossRefGoogle Scholar
  23. 23.
    Tao Sun, T., He, Y., Esmailzadeh, E., Ren, R.: Lateral stability improvement of car-trailer systems using active trailer braking control. J. Mech. Eng. Automat. 2, 555–562 (2012)Google Scholar
  24. 24.
    Sowińska, M., Jarzȩbowska, E.: Dynamics and control of a car-trailer vehicle using the Boltzmann-Hamel approach. Techn. Rap. Warsaw Univ, Techn (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Warsaw University of Technology, Institute of Aeronautics and Applied MechanicsWarsawPoland

Personalised recommendations