Quasi-Periodic Galloping of a Wind-Excited Tower Under External Forcing and Parametric Damping

  • Lahcen Mokni
  • Ilham Kirrou
  • Mohamed Belhaq
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 168)


This paper investigates the influence of combined fast external excitation and internal parametric damping on the amplitude and the onset of the quasi-periodic galloping of a tower submitted to steady and unsteady wind flow. The study is carried out considering a lumped single degree of freedom model and the cases where the turbulent wind activates different excitations are explored. The method of direct partition of motion followed by the multiple scales technique are applied to derive the slow flow dynamic near the primary resonance. The influence of the combined loading consisting in external excitation and parametric damping on the quasi-periodic galloping onset is explored. The performance of the combined loading is compared with the cases where the external excitation and the parametric damping are introduced separately. The results show that the performance of the combined loading on retarding the quasi-periodic galloping onset and quenching the corresponding amplitude is better in all cases of the turbulent wind excitations.


Galloping phenomena Parametric internal damping Quasi-periodic galloping Wind excited tower 


  1. 1.
    Parkinson, G.V., Smith, J.D.: The square prism as an aeroelastic non-linear oscillator. Quart. J. Mech. Appl. Math. 17, 225–239 (1964)CrossRefzbMATHGoogle Scholar
  2. 2.
    Novak, M.: Aeroelastic galloping of prismatic bodies. ASCE. J. Eng. Mech. 96, 115–142 (1969)Google Scholar
  3. 3.
    Nayfeh, A.H., Abdel-Rohman, M.: Galloping of squared cantilever beams by the method of multiple scales. J. Sound Vib. 143, 87–93 (1990)Google Scholar
  4. 4.
    Abdel-Rohman, M.: Effect of unsteady wind flow on galloping of tall prismatic structures. Nonlinear Dyn. 26, 231–252 (2001)CrossRefGoogle Scholar
  5. 5.
    Clark, R., Modern, A.: Course in Aeroelasticity, 4th edn. Kluwer Academic Publishers, Dordrecht, The Netherlands (2004)Google Scholar
  6. 6.
    Qu, W.L., Chen, Z.H., Xu, Y.L.: Dynamic analyziz of a wind-excited struss tower with friction dampers. Comput. Struct. 79, 2817–2831 (2001)CrossRefGoogle Scholar
  7. 7.
    Luongo, A., Zulli, D.: Parametric, external and self-excitation of a tower under turbulent wind flow. J. Sound Vib. 330, 3057–3069 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Zulli, D., Luongo, A.: Bifurcation and stability of a two-tower system under wind-induced parametric, external and self-excitation. J. Sound Vib. 331, 365–383 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Belhaq, M., Kirrou, I., Mokni, L.: Periodic and quasiperiodic galloping of a wind-excited tower under external excitation. Nonlinear Dyn. 74, 849–867 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mokni, L., Kirrou, I., Belhaq, M.: Galloping of a wind-excited tower under internal parametric damping. J. Vib. Acoust. 136, 024503–024503–7 (2014)Google Scholar
  11. 11.
    Spencer Jr, B.F., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129, 845–865 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Tondl, A.: On the interaction between self-excited and parametric vibrations. National Research Institute for Machine Design, Monographs and Memoranda. No. 25, Prague (1978)Google Scholar
  14. 14.
    Schmidt, G.: Interaction of self-excited forced and parametrically excited vibrations. In: The 9th International Conference on Nonlinear Oscillations. vol. 3, Application of The Theory of Nonlinear Oscillations. Naukowa Dumka, Kiev (1984)Google Scholar
  15. 15.
    Szabelski, K., Warminski, J.: Self excited system vibrations with parametric and external excitations. J. Sound Vib. 187(4), 595–607 (1995)Google Scholar
  16. 16.
    Szabelski, K., Warminski, J.: Parametric self excited nonlinear system vibrations analysis with inertial excitations. Int. J. Non Linear Mech. 30(2), 179–189 (1995)CrossRefADSzbMATHGoogle Scholar
  17. 17.
    Kirrou, I., Mokni, L., Belhaq, M.: On the quasiperiodic galloping of a wind-excited tower. J. Sound Vib. 332, 4059–4066 (2013)CrossRefADSGoogle Scholar
  18. 18.
    Mokni, L., Kirrou, I., Belhaq, M.: Periodic and quasiperiodic galloping of a wind-excited tower under parametric damping. J. Vib. Control. (2014). doi: 10.1177/1077546314526921
  19. 19.
    Mokni, L., Kirrou, I., Belhaq, M.: Galloping of wind-excited tower under external excitation and parametric damping. Int. J. Model. Ident. Control 1, 1–5 (2013)Google Scholar
  20. 20.
    Blekhman, I.I.: Vibrational Mechanics—Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)Google Scholar
  21. 21.
    Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer-Verlag, Berlin-Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Abouhazim, N., Belhaq, M., Lakrad, F.: Three-period quasi-periodic solutions in the self-excited quasi-periodic mathieu oscillator. Nonlinear Dyn. 39(4), 395–409 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Keightley, W.O., Housner, G.W., Hudson, D.E.: Vibration tests of the Encino dam intake tower, California Institute of Technology, Report No. 2163, Pasadena, California (1961)Google Scholar
  24. 24.
    Munteanu, L., Chiroiu, V., Sireteanu, T.: On the response of small buildings to vibrations. Nonlinear Dyn. 73, 1527–1543 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rand, R.H., Guennoun, K., Belhaq, M.: 2:2:1 Resonance in the quasi-periodic Mathieu equation. Nonlinear Dyn. 31, 187–93 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Belhaq, M., Fahsi, A.: Hysteresis suppression for primary and subharmonic 3:1 resonances using fast excitation. Nonlinear Dyn. 57, 275–286 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hamdi, M., Belhaq, M.: Quasi-periodic oscillation envelopes and frequency locking in rapidly vibrated nonlinear systems with time delay. Nonlinear Dyn. 73, 1–15 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University Hassan II-CasablancaCasablancaMorocco

Personalised recommendations