Skip to main content

Quasi-Periodic Galloping of a Wind-Excited Tower Under External Forcing and Parametric Damping

  • Conference paper
  • First Online:
Structural Nonlinear Dynamics and Diagnosis

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 168))

  • 948 Accesses

Abstract

This paper investigates the influence of combined fast external excitation and internal parametric damping on the amplitude and the onset of the quasi-periodic galloping of a tower submitted to steady and unsteady wind flow. The study is carried out considering a lumped single degree of freedom model and the cases where the turbulent wind activates different excitations are explored. The method of direct partition of motion followed by the multiple scales technique are applied to derive the slow flow dynamic near the primary resonance. The influence of the combined loading consisting in external excitation and parametric damping on the quasi-periodic galloping onset is explored. The performance of the combined loading is compared with the cases where the external excitation and the parametric damping are introduced separately. The results show that the performance of the combined loading on retarding the quasi-periodic galloping onset and quenching the corresponding amplitude is better in all cases of the turbulent wind excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkinson, G.V., Smith, J.D.: The square prism as an aeroelastic non-linear oscillator. Quart. J. Mech. Appl. Math. 17, 225–239 (1964)

    Article  MATH  Google Scholar 

  2. Novak, M.: Aeroelastic galloping of prismatic bodies. ASCE. J. Eng. Mech. 96, 115–142 (1969)

    Google Scholar 

  3. Nayfeh, A.H., Abdel-Rohman, M.: Galloping of squared cantilever beams by the method of multiple scales. J. Sound Vib. 143, 87–93 (1990)

    Google Scholar 

  4. Abdel-Rohman, M.: Effect of unsteady wind flow on galloping of tall prismatic structures. Nonlinear Dyn. 26, 231–252 (2001)

    Article  Google Scholar 

  5. Clark, R., Modern, A.: Course in Aeroelasticity, 4th edn. Kluwer Academic Publishers, Dordrecht, The Netherlands (2004)

    Google Scholar 

  6. Qu, W.L., Chen, Z.H., Xu, Y.L.: Dynamic analyziz of a wind-excited struss tower with friction dampers. Comput. Struct. 79, 2817–2831 (2001)

    Article  Google Scholar 

  7. Luongo, A., Zulli, D.: Parametric, external and self-excitation of a tower under turbulent wind flow. J. Sound Vib. 330, 3057–3069 (2011)

    Article  ADS  Google Scholar 

  8. Zulli, D., Luongo, A.: Bifurcation and stability of a two-tower system under wind-induced parametric, external and self-excitation. J. Sound Vib. 331, 365–383 (2012)

    Article  ADS  Google Scholar 

  9. Belhaq, M., Kirrou, I., Mokni, L.: Periodic and quasiperiodic galloping of a wind-excited tower under external excitation. Nonlinear Dyn. 74, 849–867 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mokni, L., Kirrou, I., Belhaq, M.: Galloping of a wind-excited tower under internal parametric damping. J. Vib. Acoust. 136, 024503–024503–7 (2014)

    Google Scholar 

  11. Spencer Jr, B.F., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129, 845–865 (2003)

    Article  MATH  Google Scholar 

  12. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  13. Tondl, A.: On the interaction between self-excited and parametric vibrations. National Research Institute for Machine Design, Monographs and Memoranda. No. 25, Prague (1978)

    Google Scholar 

  14. Schmidt, G.: Interaction of self-excited forced and parametrically excited vibrations. In: The 9th International Conference on Nonlinear Oscillations. vol. 3, Application of The Theory of Nonlinear Oscillations. Naukowa Dumka, Kiev (1984)

    Google Scholar 

  15. Szabelski, K., Warminski, J.: Self excited system vibrations with parametric and external excitations. J. Sound Vib. 187(4), 595–607 (1995)

    Google Scholar 

  16. Szabelski, K., Warminski, J.: Parametric self excited nonlinear system vibrations analysis with inertial excitations. Int. J. Non Linear Mech. 30(2), 179–189 (1995)

    Article  ADS  MATH  Google Scholar 

  17. Kirrou, I., Mokni, L., Belhaq, M.: On the quasiperiodic galloping of a wind-excited tower. J. Sound Vib. 332, 4059–4066 (2013)

    Article  ADS  Google Scholar 

  18. Mokni, L., Kirrou, I., Belhaq, M.: Periodic and quasiperiodic galloping of a wind-excited tower under parametric damping. J. Vib. Control. (2014). doi:10.1177/1077546314526921

  19. Mokni, L., Kirrou, I., Belhaq, M.: Galloping of wind-excited tower under external excitation and parametric damping. Int. J. Model. Ident. Control 1, 1–5 (2013)

    Google Scholar 

  20. Blekhman, I.I.: Vibrational Mechanics—Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)

    Google Scholar 

  21. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer-Verlag, Berlin-Heidelberg (2003)

    Book  Google Scholar 

  22. Abouhazim, N., Belhaq, M., Lakrad, F.: Three-period quasi-periodic solutions in the self-excited quasi-periodic mathieu oscillator. Nonlinear Dyn. 39(4), 395–409 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keightley, W.O., Housner, G.W., Hudson, D.E.: Vibration tests of the Encino dam intake tower, California Institute of Technology, Report No. 2163, Pasadena, California (1961)

    Google Scholar 

  24. Munteanu, L., Chiroiu, V., Sireteanu, T.: On the response of small buildings to vibrations. Nonlinear Dyn. 73, 1527–1543 (2013)

    Article  MathSciNet  Google Scholar 

  25. Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24 (1999)

    Article  MathSciNet  Google Scholar 

  26. Rand, R.H., Guennoun, K., Belhaq, M.: 2:2:1 Resonance in the quasi-periodic Mathieu equation. Nonlinear Dyn. 31, 187–93 (2003)

    Article  MathSciNet  Google Scholar 

  27. Belhaq, M., Fahsi, A.: Hysteresis suppression for primary and subharmonic 3:1 resonances using fast excitation. Nonlinear Dyn. 57, 275–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hamdi, M., Belhaq, M.: Quasi-periodic oscillation envelopes and frequency locking in rapidly vibrated nonlinear systems with time delay. Nonlinear Dyn. 73, 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilham Kirrou .

Editor information

Editors and Affiliations

Appendices

Appendix 1

The expression of the coefficients of (1) are:

$$\begin{aligned} \omega =\pi \frac{\sqrt{3EI}}{h \ell \sqrt{m}},~~c_{a}=\frac{\rho A_{1}bh \ell \bar{U}_{c}}{2\pi \sqrt{3EIm}},~~b_{1}=c_{a},~~b_{2}=-\frac{4\rho A_{2}b\ell }{3\pi m},~~b_{31}=-\frac{3\pi \rho A_{3}b\ell \sqrt{3EI}}{8h\bar{U}_{c}\sqrt{m^{3}}} \end{aligned}$$
(24)
$$\begin{aligned} b_{32}=-b_{31},~~~\eta _{1}=\frac{4\rho A_{0}bh^2\ell \bar{U}_{c}^{2}}{3\pi ^{3}EI},~~~ \eta _{2}=\frac{\eta _{1}}{2},~~~U(t)=\bar{U}+u(t), \end{aligned}$$
(25)

where \(\ell \) is the height of the tower, b the cross-section wide, \(\textit{EI}\) the total stiffness of the single story, m the mass longitudinal density, h the inter story height, and \(\rho \) the air mass density. \(A_{i}, i=0,...3\) are the aerodynamic coefficients for the squared cross-section. The dimensional critical velocity is given by

$$\begin{aligned} \bar{U}_{c}=\frac{4\pi \xi \sqrt{3EIm}}{\rho bA_{1}h\ell } \end{aligned}$$
(26)

where \(\xi \) is the modal damping ratio, depending on both the external and internal damping according to

$$\begin{aligned} \xi =\frac{\zeta h^{2}}{24EI}\omega +\frac{c_0}{2m\omega } \end{aligned}$$
(27)

where \(\zeta \) and \(c_0\) are the external and internal damping coefficients, respectively. Introducing a parametric damper device in the internal damping such as

$$\begin{aligned} c_0=c (1+y_{0}\nu ^2\cos \nu t) \end{aligned}$$
(28)

where \(y_{0}\) and \(\nu \) are the amplitude and the frequency of the internal PD, respectively. In this case the equation of motion reads

$$\begin{aligned} \ddot{x}+x+\big [c_{a}+Y\nu ^2\cos \nu t\big ]\dot{x}-c_{a}\big [\bar{U}+u(t)\big ]\dot{x}+b_{2}\dot{x}^2+ \left[ \frac{b_{31}}{\bar{U}}+\frac{b_{32}}{\bar{U}^2}u(t)\right] \dot{x}^3= \nonumber \\ \eta _{1}\bar{U}u(t)+\eta _{2}\bar{U}^2 \end{aligned}$$
(29)

where \(Y=\frac{cy_{0}}{m\omega }\). Re-arranging terms yields the equation of motion (1).

Appendix 2

Introducing \(D_{i}^{j}\equiv \frac{\partial ^{j}}{\partial ^{j}T_{i}}\) yields \(\frac{d}{dt}=\nu D_{0}+ D_{1}\), \(\frac{d^{2}}{dt^{2}}=\nu ^{2} D_{0}^{2}+ 2\nu D_{0}D_{1}+D_{1}^{2}\) and substituting (2) into (1) gives

$$\begin{aligned} \mu ^{-1}D_{0}^{2}\phi&+D_{1}^{2}z+2D_{0}D_{1}\phi +\mu D_{1}^{2}\phi +\big (c_{a}(1-\bar{U})-b_{1}u(t)\big )\big (D_{1}z+ D_{0}\phi \nonumber \\ {}&+\mu D_{1}\phi \big )+z+\mu \phi +Y\nu ^2\cos (\nu t)\big (D_{1}z+ D_{0}\phi +\mu D_{1}\phi \big ) +b_{2}\big ((D_{1}z)^2\nonumber \\ {}&+2D_{1}z(D_{0}\phi +\mu D_{1}\phi )+ (D_{0}\phi )^2+2\mu D_{0}\phi D_{1}\phi +(\mu D_{1}\phi )^2\big )\nonumber \\ {}&+\left( \frac{b_{31}}{\bar{U}}+\right. \left. \frac{b_{32}}{\bar{U}^2}u(t)\right) \big ((D_{1}z)^3 +3(D_{1}z)^2(D_{0}\phi +\mu D_{1}\phi )\nonumber \\ {}&+ 3(D_{1}z)(D_{0}\phi +\mu D_{1}\phi )^2+ (D_{0}\phi +\mu D_{1}\phi )^3\big )=\eta _{1}\bar{U}u(t)+ \eta _{2}\bar{U}^2 \nonumber \\ \end{aligned}$$
(30)

Averaging (30) leads to

$$\begin{aligned} D_{1}^{2}z&+\big (c_{a}(1-\bar{U})-b_{1}u(t)\big )D_{1}z+z+Y\nu ^2<\cos (T_{0})\big (D_{0}\phi +\mu D_{1}\phi \big )>\nonumber \\ {}&+b_{2}\big ((D_{1}z)^2\,+\, <(D_{0}\phi )^2>+<(2\mu D_{0}\phi D_{1}\phi )>+<(\mu D_{1}\phi )^2>\big )\nonumber \\ {}&+ \left( \frac{b_{31}}{\bar{U}} +\frac{b_{32}}{\bar{U}^2}u(t)\right) \big ((D_{1}z)^3+ 3D_{1}z(<(D_{0}\phi )^2>+<(2\mu D_{0}\phi D_{1}\phi )>\nonumber \\ {}&+ <(\mu D_{1}\phi )^2>)\big )=\eta _{1}\bar{U}u(t)+\eta _{2}\bar{U}^2 \nonumber \\ \end{aligned}$$
(31)

Subtracting (31) from (30) yields

$$\begin{aligned} \mu ^{-1}D_{0}^{2}\phi&+2D_{0}D_{1}\phi +\mu D_{1}^{2}\phi +\big (c_{a}(1-\bar{U})-b_{1}u(t)\big )\big (D_{0}\phi + \mu D_{1}\phi \big )\nonumber \\ {}&+ \mu \phi + Y\nu ^2\cos (T_{0})\big (D_{0}\phi +\mu D_{1}\phi \big )-Y\nu ^2<\cos (T_{0})\big (D_{0}\phi +\mu D_{1}\phi \big )>\nonumber \\ {}&+ b_{2}\big (2D_{1}z(D_{0}\phi +D_{0}\phi )^2-<(D_{0}\phi )^2>\,+\,2\mu D_{0}\phi D_{1}\phi -(<2\mu D_{0}\phi D_{1}\phi >\nonumber \\&+(\mu D_{1}\phi )^2- <(\mu D_{1}\phi )^2>\big )+ \left( \frac{b_{31}}{\bar{U}}+ \frac{b_{32}}{\bar{U}^2}u(t)\right) \big (3(D_{1}z)^2(D_{0}\phi +\mu D_{1}\phi )\nonumber \\ {}&+ 3D_{1}z(D_{0}\phi )^2- 3D_{1}z<(D_{0}\phi )^2>\,+\,6D_{1}z\mu (D_{0}\phi D_{1}\phi )\nonumber \\ {}&- <6D_{1}z\mu (D_{0}\phi D_{1}\phi )>\,+\,3D_{1}z(\mu D_{1}\phi )^2-3D_{1}z<(\mu D_{1}\phi )^2>\,+\, (D_{0}\phi )^3 \nonumber \\ {}&+ 3\mu (D_{0}\phi )^2D_{1}\phi + 3D_{0}\phi (\mu D_{1}\phi )^2+(\mu D_{1}\phi )^3\big )= -Y\nu ^2\cos (T_{0})D_{1}z \nonumber \\ \end{aligned}$$
(32)

Using the inertial approximation [20], i.e. all terms in the left-hand side of (32), except the first, are ignored, one obtains

$$\begin{aligned} \phi =Y\nu \cos (T_{0})D_{1}z \end{aligned}$$
(33)

Inserting \(\phi \) from (33) into (31), using that \(<cos^{2}T_{0}>\,=\,1/2\), and keeping only terms of orders three in z, give the equation governing the slow dynamic of the motion (3).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mokni, L., Kirrou, I., Belhaq, M. (2015). Quasi-Periodic Galloping of a Wind-Excited Tower Under External Forcing and Parametric Damping. In: Belhaq, M. (eds) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-19851-4_7

Download citation

Publish with us

Policies and ethics