Skip to main content

Recurrence and Joint Recurrence Analysis of Multiple Attractors Energy Harvesting System

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 168))

Abstract

The method of recurrence plots and joint recurrence plots are considered as tools for the nonlinear analysis of a dimensionless model of magnetoelastric piezoelectric energy harvester under wind flow excitation with low Reynolds number. The dynamics of the system is investigated by considering the bifurcation of the recurrence rate, the laminarity and the determinism and illustrations of system response are presented though the recurrence plots and phase diagrams. In order to enhance the efficiency of the system, a second degree of freedom is added to the mechanical part. The method of joint recurrence plot is used to analyze the global synchronization of the system. In this spirit, a feedback Master-Slave configuration is adopted to ensure optimal synchronized mechanical excursion and thus maximal electric voltage harvested in the electric load. Throughout the paper, attention is focussed on the effects of feedback coupling and mistuning parameter, as well as the relevance of the method of recurrence plots and joint recurrence plots in the analysis of such system. Specifically, it is shown that the joint recurrence plot synchronization parameter effectively detects domain of maximal output electric power as well as domain of out-of-phase motion leading to minimal output power.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abarbanel, H.D.: Analysis of Observed Chaotic Data. Springer-Verlag, New York (1996)

    Google Scholar 

  2. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)

    Article  MathSciNet  Google Scholar 

  3. Abdelkefi, A., Vasconcellos, R., Marques, F.D., Hajj, M.R.: Bifurcation analysis of an aeroelastic system with concentrated nonlinearities. Nonlinear Dyn. 69, 57–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013)

    Google Scholar 

  5. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329, 2873–2883 (2010)

    Article  ADS  Google Scholar 

  6. Barrero-Gil, A., Pindado, S., Avila, S.: Extracting energy from vortex-induced vibrations: a parametric study. Appl. Math. Modell. 36(7), 3153–3160 (2012)

    Article  Google Scholar 

  7. Barrero-Gil, A., Sanz-Andrs, A., Alonso, G.: Hysteresis in transverse galloping: the role of the inflection points. J. Fluids Struct. 25(6), 1007–1020 (2009)

    Article  ADS  Google Scholar 

  8. Barrero-Gil, A., Sanz-Andrs, A., Roura, M.: Transverse galloping at low reynolds numbers. J. Fluids Struct. 25(7), 1236–1242 (2009)

    Article  ADS  Google Scholar 

  9. Borowiec, M., Litak, G.: Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation. Nonlinear Dyn. 70, 1125–1133 (2012)

    Article  MathSciNet  Google Scholar 

  10. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Article  ADS  Google Scholar 

  11. Farrar, C.R., Hemez, F., Park, G., Robertson, A., Sohn, H., Williams, T.O.: A coupled approach to developing damage prognosis solutions. Key Eng. Mater. 245–246, 289–306 (2003)

    Google Scholar 

  12. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens. Actuators, A 142(1), 329–335 (2008)

    Article  Google Scholar 

  13. Guyomar, D., Lallart, M.: Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2, 274–294 (2011)

    Article  Google Scholar 

  14. Hartog, J.D.: Mechanical Vibrations. McGraw-Hill Book Company, New York (1956)

    Google Scholar 

  15. Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  ADS  Google Scholar 

  16. Ji, H., Qiu, J., Badel, A., Chen, Y., Zhu, K.: Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on lms algorithm. J. Intell. Mater. Syst. Struct. 20, 939–947 (2009)

    Article  Google Scholar 

  17. Kadji, H.E., Orou, J.C., Woafo, P.: Synchronization dynamics in a ring of four mutually coupled biological systems. Commun. Nonlinear Sci. Numer. Simul. 13(7), 1361–1372 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kadji, H.E., Orou, J.C., Yamapi, R., Woafo, P.: Nonlinear dynamics and strange attractors in the biological system. Chaos, Solitons Fractals 32(2), 862–882 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kwon, S.D.: A t-shaped piezoelectric cantilever for fluid energy harvesting. Appl. Phys. Lett. 97(16), 164102 (2010)

    Article  ADS  Google Scholar 

  20. Kwuimy, C.A.K., Litak, G.: Enhance limit cycle oscillation in a wind flow energy harvester system with fractional order derivatives. Theor. Appl. Mech. Lett. 4(5), 12 (2014)

    Google Scholar 

  21. Kwuimy, C.A.K., Litak, G., Borowiec, M., Nataraj, C.: Performance of a piezoelectric energy harvester driven by air fow. Appl. Phys. Lett. 100(2), 024103–3 (2012)

    Google Scholar 

  22. Kwuimy, C.A.K., Litak, G., Nataraj, C.: Enhancing energy harvesting system using materials with fractional order stiffness. In: Proceedings of the ASME 2013 Dynamic Systems and Control Conference (2013)

    Google Scholar 

  23. Kwuimy, C.A.K., Litak, G., Nataraj, C.: Enhancing energy harvesting system using materials with fractional order stiffness. Nonlinear Dynamics In press (2014)

    Google Scholar 

  24. Kwuimy, C.A.K., Nbendjo, B.N., Woafo, P.: Optimization of electromechanical control of beam dynamics: analytical method and finite differences simulation. J. Sound Vib. 298(1–2), 180–193 (2006)

    Article  ADS  Google Scholar 

  25. Kwuimy, C.A.K., Samadani, M., Nataraj, C.: Bifurcation analysis of a nonlinear pendulum using recurrence and statistical methods: applications to fault diagnostics. Nonlinear Dyn. 76(4), 1963–1975 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kwuimy, C.A.K., Woafo, P.: Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm. Nonlinear Dyn. 53(3), 201–213 (2008)

    Article  MATH  Google Scholar 

  27. Kwuimy, C.A.K., Kadji, H.E.: Recurrence analysis and synchronization of oscillators with coexisting attractors. Phys. Lett. A 378(3031), 2142–2150 (2014)

    Google Scholar 

  28. Kwuimy, C.K., Samadani, M., Kappaganthu, K., Nataraj, C.: Sequential recurrence analysis of experimental time series of a rotor response with bearing outer race faults. In: Proceedings of the 10th International Conference on Vibration Engineering & Technology of Machinery: VETOMAC X 2014. Springer (2014)

    Google Scholar 

  29. Lefeuvre, E., Badel, A., Petit, L., Richard, C., Guyomar, D.: Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. J. Intell. Mater. Syst. Struct. 17, 653–660 (2006)

    Article  Google Scholar 

  30. Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96(21), 214103 (2010)

    Article  ADS  Google Scholar 

  31. Litak, G., Friswell, M.I., Kwuimy, C.K., Adhikari, S., Borowiec, M.: Energy harvesting by two magnetopiezoelastic oscillators with mistuning. Theor. Appl. Mech. Lett. 2, 043009 (2012)

    Google Scholar 

  32. Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T., Lee, C.: Development of piezoaeroelastic microcantiliver flow sensor with wind-driven energy harvesting capability. Appl. Phys. Lett. 100, 223905 (2012)

    Google Scholar 

  33. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. Matassini, L., Kantz, H., Holyst, J., Hegger, R.: Optimizing of recurrence plots for noise reduction. Phys. Rev. E 65(2), 021102 (2002)

    Google Scholar 

  35. Nayfeh, A.H., Mook, D.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  36. Ovejas, V.J., Cuadras, A.: Multimodal piezoelectric wind energy harvesters. Smart Mater. Struct. 20, 1–9 (2011)

    Article  Google Scholar 

  37. Ramlan, R., Brennan, M., Mace, B., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010)

    Article  MATH  Google Scholar 

  38. Samadani, M., Kwuimy, C.A.K., Nataraj, C.: Diagnostics of a nonlinear pendulum using computational intelligence. In: Proceedings of the 6th Annual Dynamic Systems and Control Conference, Palo Alto, California, USA (2013)

    Google Scholar 

  39. Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292(3–5), 987–998 (2006)

    Article  ADS  Google Scholar 

  40. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering. Perseus Books Publishing, LLC (1994)

    Google Scholar 

  41. Tang, L., Yang, Y.: Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Mater. Struct. 20, 085022 (2011)

    Google Scholar 

  42. Tekam, G.T.O., Tchuisseu, E.B.T., Kwuimy, C.A.K., Woafo, P.: Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities. Nonlinear Dyn. 76(2), 1561–1568 (2014)

    Article  Google Scholar 

  43. Tekam, G.T.O., Kwuimy, C.A.K., Woafo, P.: Nonlinear analysis of tristable energy harvesting having fractional order viscoelastic material. Chaos, In press (2014)

    Google Scholar 

  44. Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill, New York (1961)

    Google Scholar 

  45. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, New York (1990)

    Google Scholar 

  46. Wu, H., Tang, L., Yang, Y., Soh, C.K.: A nonvel two-degree-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 24(3), 357–368 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been founded by the US Office of Naval research under the grant ONR N00014-08-1-0435 (Program manager: Mr. Anthony Seman III).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Kitio Kwuimy .

Editor information

Editors and Affiliations

Appendix: Definition of Recurrence Quantification Analysis Parameters

Appendix: Definition of Recurrence Quantification Analysis Parameters

  1. 1.

    RR which defines the percentage of recurring points in the whole matrix. The RR is higher for periodic dynamics and smaller for chaotic or random dynamics. By definition, one has

    $$\begin{aligned} RR=\frac{1}{N^2}\sum _{i,j=1}^N\mathbf {R}_{i,j}(\varepsilon )\cdot \end{aligned}$$
    (39)
  2. 2.

    The percentage of recurrent points that form diagonal lines (of at least length \(\ell _{min}\)) parallel to the main diagonal DET gives information on the deterministic nature of the system. A chaotic system tends to have none or very short diagonals in opposite to periodic or quasi-periodic dynamics which tend to form regular diagonals parallel to the central diagonal along with mixture of short and long diagonals. The DET is defined as

    $$\begin{aligned} DET=\frac{\sum _{\ell =\ell _{min}}^N\ell P(\ell )}{\sum _{\ell =1}^N\ell P(\ell )}, \end{aligned}$$
    (40)

    where \(\ell \) is the length of the diagonal line and P(x) is the histogram of x for a given threshold \(\varepsilon \). If v is the length of the vertical line, one has

    $$\begin{aligned} LAM=\frac{\sum _{v=v_{min}}^Nv P(v)}{\sum _{v=1}^Nv P(v)} \end{aligned}$$
    (41)

    LAM decreases if the RP consists of more single recurrence points than vertical structures. This is related to the existence of intermittency in the system response [33].

In obtaining the RP of the system, we used the fourth order Runge Kutta algorithm to obtain sets of N = 8000 points for time series. The first 1000 values were ignored (transient time) and the time step was kept constant \(\varDelta t=0.01\). The RR and DET are evaluated using the above definitions in a self made codes. However, various numerical codes are available online.

The bifurcation diagrams were obtained by increasing adiabatically (constant initial conditions) the bifurcation parameter and used the above procedure to generate the RR, LAM and DET.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kwuimy, C.A.K., Nataraj, C. (2015). Recurrence and Joint Recurrence Analysis of Multiple Attractors Energy Harvesting System. In: Belhaq, M. (eds) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-19851-4_6

Download citation

Publish with us

Policies and ethics