Skip to main content

Proposal of a Nonlinear Piezoelectric Coupling Term to Energy Harvesting Interactions

  • Conference paper
  • First Online:
  • 988 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 168))

Abstract

Nowadays, new technologies have triggered the needs of new energy sources, smaller and more efficient, so the research about energy harvesting has increased substantially. Several researchers have developed the conversion of wasted mechanical energy to electrical energy using piezoelectric materials as a transducer. This chapter proposes a mathematical model for the constitutive equation of a piezoelectric transducer. Experimental results involving piezoelectric elements were considered. The proposed mathematical model allows a considerably better description. The results are closer to those obtained in a real system, reducing inaccuracy of predictive behaviour of the piezoelectric energy harvesting system. In this work, the numerical simulations show a significant difference between results obtained with the proposed model and other models available in literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Article  ADS  Google Scholar 

  2. Litak, G., Friswell, M.I., Kwuimy, C.A.K., Adhikari, S., Borowiec, M.: Energy harvesting by two magnetopiezoelastic oscillators with mistuning. Theor. Appl. Mech. Lett. 2(4), 043009 (2012)

    Article  Google Scholar 

  3. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)

    Google Scholar 

  4. Priya, S., Inman, D.J. (eds.): Energy Harvesting Technologies. Springer, New York (2009)

    Google Scholar 

  5. Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293(1), 409–425 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Jalili, N.: Piezoelectric-based vibration control. From Macro to Micro/Nano Scale Systems. Springer, New York (2010)

    Google Scholar 

  7. Crawley, E.F., Anderson, E.H.: Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct. 1(1), 4–25 (1990)

    Article  Google Scholar 

  8. DuToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45(5), 1126–1137 (2007)

    Article  ADS  Google Scholar 

  9. Twiefel, J., Richter, B., Sattel, T., Wallaschek, J.: Power output estimation and experimental validation for piezoelectric energy harvesting systems. J. Electroceram. 20(3–4), 203–208 (2008)

    Article  Google Scholar 

  10. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20(16), 1959–1967 (2009)

    Article  Google Scholar 

  11. Iliuk, I., Balthazar, J.M., Tusset, A.M., Felix, J.L.P., de Pontes, B.R.: Nonlinear dynamics and control strategies: on a energy harvester vibrating system with a linear form to non-ideal motor torquet. In: MATEC Web of Conferences, vol. 1, p. 08003. EDP Sciences (2012)

    Google Scholar 

  12. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R., de Pontes, B.R., Felix, J.L., Bueno, Á.M.: Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J. Intell. Mater. Syst. Struct. 1045389X13500570 (2013)

    Google Scholar 

  13. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., de Pontes, B.R., Felix, J.L.P., Bueno, Á.M.: A non-ideal portal frame energy harvester controlled using a pendulum. European Phys. J. Spec. Top. 222(7), 1575–1586 (2013)

    Article  ADS  Google Scholar 

  14. Iliuk, I., Brasil, R.M.L.R.D.F., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Piqueira, J.R.C.: Potential application in energy harvesting of intermodal energy exchange in a frame: FEM analysis. Int. J. Struct. Stab. Dyn. (2014)

    Google Scholar 

  15. Tusset, A.M., Balthazar, J.M., Felix, J.L.P.: On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J. Vib. Control. 19, 803–813 (2013) 1077546311435518 (2012)

    Google Scholar 

  16. Tusset, A.M., Balthazar, J.M., Chavarette, F.R., Felix, J.L.P.: On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper. Nonlinear Dyn. 69(4), 1859–1880 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manoel Balthazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tusset, Â.M. et al. (2015). Proposal of a Nonlinear Piezoelectric Coupling Term to Energy Harvesting Interactions. In: Belhaq, M. (eds) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-19851-4_4

Download citation

Publish with us

Policies and ethics