Proposal of a Nonlinear Piezoelectric Coupling Term to Energy Harvesting Interactions

  • Ângelo Marcelo Tusset
  • Itamar Iliuk
  • Rodrigo Tumolin Rocha
  • Vinícius Piccirillo
  • José Manoel Balthazar
  • Jorge Luiz Palacios Felix
  • Reyolando Manoel Lopes Rebello da Fonseca Brasil
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 168)


Nowadays, new technologies have triggered the needs of new energy sources, smaller and more efficient, so the research about energy harvesting has increased substantially. Several researchers have developed the conversion of wasted mechanical energy to electrical energy using piezoelectric materials as a transducer. This chapter proposes a mathematical model for the constitutive equation of a piezoelectric transducer. Experimental results involving piezoelectric elements were considered. The proposed mathematical model allows a considerably better description. The results are closer to those obtained in a real system, reducing inaccuracy of predictive behaviour of the piezoelectric energy harvesting system. In this work, the numerical simulations show a significant difference between results obtained with the proposed model and other models available in literature.


Energy harvesting Non-ideal systems Nonlinear piezoelectric Nonlinear dynamics 


  1. 1.
    Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)CrossRefADSGoogle Scholar
  2. 2.
    Litak, G., Friswell, M.I., Kwuimy, C.A.K., Adhikari, S., Borowiec, M.: Energy harvesting by two magnetopiezoelastic oscillators with mistuning. Theor. Appl. Mech. Lett. 2(4), 043009 (2012)CrossRefGoogle Scholar
  3. 3.
    Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)Google Scholar
  4. 4.
    Priya, S., Inman, D.J. (eds.): Energy Harvesting Technologies. Springer, New York (2009)Google Scholar
  5. 5.
    Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293(1), 409–425 (2006)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Jalili, N.: Piezoelectric-based vibration control. From Macro to Micro/Nano Scale Systems. Springer, New York (2010)Google Scholar
  7. 7.
    Crawley, E.F., Anderson, E.H.: Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct. 1(1), 4–25 (1990)CrossRefGoogle Scholar
  8. 8.
    DuToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45(5), 1126–1137 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Twiefel, J., Richter, B., Sattel, T., Wallaschek, J.: Power output estimation and experimental validation for piezoelectric energy harvesting systems. J. Electroceram. 20(3–4), 203–208 (2008)CrossRefGoogle Scholar
  10. 10.
    Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20(16), 1959–1967 (2009)CrossRefGoogle Scholar
  11. 11.
    Iliuk, I., Balthazar, J.M., Tusset, A.M., Felix, J.L.P., de Pontes, B.R.: Nonlinear dynamics and control strategies: on a energy harvester vibrating system with a linear form to non-ideal motor torquet. In: MATEC Web of Conferences, vol. 1, p. 08003. EDP Sciences (2012)Google Scholar
  12. 12.
    Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R., de Pontes, B.R., Felix, J.L., Bueno, Á.M.: Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J. Intell. Mater. Syst. Struct. 1045389X13500570 (2013)Google Scholar
  13. 13.
    Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., de Pontes, B.R., Felix, J.L.P., Bueno, Á.M.: A non-ideal portal frame energy harvester controlled using a pendulum. European Phys. J. Spec. Top. 222(7), 1575–1586 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Iliuk, I., Brasil, R.M.L.R.D.F., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Piqueira, J.R.C.: Potential application in energy harvesting of intermodal energy exchange in a frame: FEM analysis. Int. J. Struct. Stab. Dyn. (2014)Google Scholar
  15. 15.
    Tusset, A.M., Balthazar, J.M., Felix, J.L.P.: On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J. Vib. Control. 19, 803–813 (2013) 1077546311435518 (2012)Google Scholar
  16. 16.
    Tusset, A.M., Balthazar, J.M., Chavarette, F.R., Felix, J.L.P.: On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper. Nonlinear Dyn. 69(4), 1859–1880 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ângelo Marcelo Tusset
    • 1
  • Itamar Iliuk
    • 2
  • Rodrigo Tumolin Rocha
    • 3
  • Vinícius Piccirillo
    • 1
  • José Manoel Balthazar
    • 4
    • 5
  • Jorge Luiz Palacios Felix
    • 6
  • Reyolando Manoel Lopes Rebello da Fonseca Brasil
    • 7
  1. 1.Department of MathematicsUTFPR - Federal Technological University of ParanáPonta GrossaBrazil
  2. 2.Department of Telecommunication Engineering and ControlEPUSP - Polytechnic School of the University of São PauloSão PauloBrazil
  3. 3.Faculty of Mechanical EngineeringUNESP - São Paulo State UniversityBauruBrazil
  4. 4.Mechanical Aeronautics DivisionITA - Aeronautics Technological InstituteSão José dos CamposBrazil
  5. 5.Faculty of Mechanical EngineeringUNESP - São Paulo State UniversityBauruBrazil
  6. 6.Technological Center of AlegreteUNIPAMPA - Federal University of PampaAlegreteBrazil
  7. 7.CECS - Center of Engineering, Modelling and Applied Social ScienceUFABC - Federal University of Santo AndréSanto AndréBrazil

Personalised recommendations