Skip to main content

Hysteretic Nonlinearity in Inverted Pendulum Problem

  • Conference paper
  • First Online:
Structural Nonlinear Dynamics and Diagnosis

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 168))

Abstract

This work is dedicated to the problem of inverted pendulum under hysteretic nonlinearity in the form of backlash in the suspension point. We present the results for various motion of the suspension point, namely, the vertical and horizontal motions. We consider the mathematical model of inverted pendulum with vertically oscillating suspension and in the frame of presented model the explicit stability criteria for the linearized equations of motion are found. Dependencies between initial conditions and driven parameters, that provide periodic oscillations of the pendulum, are obtained. In the next step we consider the mathematical model of inverted pendulum under state feedback control (horizontal motion of suspension). Analytic results for the stability criteria as well as for the solution of linearized equation are observed and analyzed. The theorems that determine stabilization of the considered system are formulated and discussed together with the question on the optimal control. We also investigate the elastic inverted pendulum with backlash in the suspension point (horizontal motion). The problem of stabilization together with an optimization problem for such a system is considered. Algorithm (based on the bionic model) which provides the effective procedure for finding of optimal parameters is presented and applied to considered system. Phase portraits and dynamics of the Lyapunov function are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The one-dimensional swinging inverted pendulum with two degrees of freedom is a popular demonstration of using feedback control to stabilize an open-loop unstable system. Since the system is inherently nonlinear, it has been using extensively by the control engineers to verify a modern control theory. In this system, an inverted pendulum is attached to a cart equipped with a motor that drives it along a horizontal track [14].

  2. 2.

    Here we would like to note that in three considered cases we introduce the mathematical description of backlash in the ways that are comfortable to use in the concrete case. However all these descriptions are based on the operator technique with small variations that are presented in the corresponding sections.

  3. 3.

    Here we would like to note that both of the cylinder and piston are ideal, absolutely rigid and can move along the y-axis in the infinite ranges.

  4. 4.

    It should be pointed out that such a periodic behavior of the piston’s acceleration (i.e., the fact that the acceleration of the piston changes from \(-a\omega ^{2}\) to \(a\omega ^{2}\)) is an assumption of the model presented in this paper. Such a model allows us to obtain some analytical results (the explicit conditions for the stability zones). Also, the numerical simulations are most effectively in the frame of this model. Moreover, such a model of the piston’s behavior most effectively and adequately describes the dynamics of the parts of real technical devices.

  5. 5.

    Here we use the following notations: \(a_{x}=\frac{\partial a}{\partial x}\), \(a_{t}=\frac{\partial a}{\partial t}\).

References

  1. Aguilar-Ibáñez, C., Mendoza-Mendoza, J., Dávila, J.: Stabilization of the cart pole system: by sliding mode control. Nonlinear Dyn. 78, 2769–2777 (2014)

    Article  Google Scholar 

  2. Arinstein, A., Gitterman, M.: Inverted spring pendulum driven by a periodic force: linear versus nonlinear analysis. Eur. J. Phys. 29, 385–392 (2008)

    Article  Google Scholar 

  3. Åström, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36, 287–295 (2000)

    Article  MATH  Google Scholar 

  4. Bloch, A.M., Leonard, N.E., Marsden, J.E.: Controlled lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Autom. Control 45, 2253–2270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boubaker, O.: The inverted pendulum: a fundamental benchmark in control theory and robotics. In: International Conference on Education and e-Learning Innovations (ICEELI 2012), pp. 1–6 (2012)

    Google Scholar 

  6. Butikov, E.I.: Subharmonic resonances of the parametrically driven pendulum. J. Phys. A: Math. Theor. 35, 6209 (2002)

    Article  ADS  Google Scholar 

  7. Butikov, E.I.: An improved criterion for Kapitza’s pendulum stability. J. Phys. A: Math. Theor. 44, 295202 (2011)

    Google Scholar 

  8. Butikov, E.I.: Oscillations of a simple pendulum with extremely large amplitudes. Eur. J. Phys. 33, 1555–1563 (2012)

    Article  MATH  Google Scholar 

  9. Chang, L.H., Lee, A.C.: Design of nonlinear controller for bi-axial inverted pendulum system. IET Control Theor. Appl. 1, 979–986 (2007)

    Article  Google Scholar 

  10. Chaturvedi, N.A., McClamroch, N.H., Bernstein, D.S.: Stabilization of a 3d axially symmetric pendulum. Automatica 44, 2258–2265 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chernous’ko, F.L., Reshmin, S.A.: Time-optimal swing-up feedback control of a pendulum. Nonlinear Dyn. 47, 65–73 (2007)

    Article  MathSciNet  Google Scholar 

  12. Dadfarnia, M., Jalili, N., Xian, B., Dawson, D.M.: A lyapunov-based piezoelectric controller for flexible cartesian robot manipulators. J. Dyn. Syst. Meas. Control 126, 347–358 (2004)

    Article  Google Scholar 

  13. Dadios, E.P., Fernandez, P.S., Williams, D.J.: Genetic algorithm on line controller for the flexible inverted pendulum problem. J. Adv. Comput. Intell. Intell. Inform. 10, 155–160 (2006)

    Google Scholar 

  14. Hasan, M., Saha, C., Rahman, M.M., Sarker, M.R.I., Aditya, S.K.: Balancing of an inverted pendulum using pd controller. Dhaka Univ. J. Sci. 60, 115–120 (2012)

    Google Scholar 

  15. Henders, M., Soudack, A.: Dynamics and stability state-space of a controlled inverted pendulum. Int. J. Nonlinear Mech. 31, 215–227 (1996)

    Article  ADS  MATH  Google Scholar 

  16. Huang, J., Ding, F., Fukuda, T., Matsuno, T.: Modeling and velocity control for a novel narrow vehicle based on mobile wheeled inverted pendulum. IEEE Trans. Control Syst. Technol. 21, 1607–1617 (2013)

    Article  Google Scholar 

  17. Kapitza, P.L.: Dynamic stability of a pendulum when its point of suspension vibrates. Soviet Phys. JETP 21, 588–592 (1951)

    Google Scholar 

  18. Kapitza, P.L.: Pendulum with a vibrating suspension. Usp. Fiz. Nauk (in Russian) 44, 7–15 (1951)

    Google Scholar 

  19. Kim, K.D., Kumar, P.: Real-time middleware for networked control systems and application to an unstable system. IEEE Trans. Control Syst. Technol. 21, 1898–1906 (2013)

    Article  Google Scholar 

  20. Krasnosel’skii, M.A., Burd, V.S., Kolesov, J.S.: Nonlinear Almost Periodic Oscillations. Wiley, New York (1973)

    Google Scholar 

  21. Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin-Heidelberg-New York-Paris-Tokyo (1989)

    Book  MATH  Google Scholar 

  22. Kuwana, Y., Shimoyama, I., Sayama, Y., Miura, H.: Synthesis of pheromone-oriented emergent behavior of a silkworm moth. In: Intelligent Robots and Systems ’96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, vol. 3, pp. 1722–1729 (1996)

    Google Scholar 

  23. Li, G., Liu, X.: Dynamic characteristic prediction of inverted pendulum under the reduced-gravity space environments. Acta Astronaut. 67, 596–604 (2010)

    Article  ADS  Google Scholar 

  24. Lozano, R., Fantoni, I., Block, D.J.: Stabilization of the inverted pendulum around its homoclinic orbit. Syst. Control Lett. 40, 197–204 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo, Z.H., Guo, B.Z.: Shear force feedback control of a single-link flexible robot with a revolute joint. IEEE Trans. Autom. Control 42, 53–65 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Magnus, K., Popp, K.A.: Schwingungen: eine Einfuehrung in die physikalische Grundlagen und die theoretische Behandlung von Schwingungsproblemen. Teubner B.G, GmbH (1997)

    Google Scholar 

  27. Mason, P., Broucke, M., Piccoli, B.: Time optimal swing-up of the planar pendulum. IEEE Trans. Autom. Control 53, 1876–1886 (2008)

    Article  MathSciNet  Google Scholar 

  28. Mata, G.J., Pestana, E.: Effective hamiltonian and dynamic stability of the inverted pendulum. Eur. J. Phys. 25, 717 (2004)

    Article  MATH  Google Scholar 

  29. Merkin, D.R.: Introduction to the Theory of Stability. Springer, New York (1997)

    Google Scholar 

  30. Mikheev, Y.V., Sobolev, V.A., Fridman, E.M.: Asymptotic analysis of digital control systems. Autom. Remote Control 49, 1175–1180 (1988)

    MathSciNet  MATH  Google Scholar 

  31. Miroshnik, I.V.: Automatic Control Theory. Piter, St.Peterburg (2006). (in Russian)

    Google Scholar 

  32. Nelepin, R.A. (ed.): Methods of Investigation of Automatic Control Nonlinear Systems. Nauka, Moscow (1975). (in Russian)

    Google Scholar 

  33. Pierce-Shimomura, J.T., Morse, T.M., Lockery, S.R.: The fundamental role of pirouettes in caenorhabditis elegans chemotaxis. J. Neurosci. 19, 9557–9569 (1999)

    Google Scholar 

  34. Pippard, A.B.: The inverted pendulum. Eur. J. Phys. 8, 203 (1987)

    Article  Google Scholar 

  35. Pliss, V.A.: Nonlocal Problems of the Theory of Oscillations. Academic Press (1966)

    Google Scholar 

  36. Reshmin, S.A., Chernous’ko, F.L.: A time-optimal control synthesis for a nonlinear pendulum. J. Comput. Syst. Sci. Int. 46, 9–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sato, C.: Correction of stability curves in Hill-Meissner’s equation. Math. Comput. 20, 98–106 (1966)

    MATH  Google Scholar 

  38. Sazhin, S., Shakked, T., Katoshevski, D., Sobolev, V.: Particle grouping in oscillating flows. Eur. J. Mech. B-Fluid. 27, 131–149 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Semenov, M.E., Grachikov, D.V., Mishin, M.Y., Shevlyakova, D.V.: Stabilization and control models of systems with hysteresis nonlinearities. Eur. Res. 20, 523–528 (2012)

    Google Scholar 

  40. Semenov, M.E., Grachikov, D.V., Rukavitsyn, A.G., Meleshenko, P.A.: On the state feedback control of inverted pendulum with hysteretic nonlinearity. In: MATEC Web of Conferences 16, 05009 (2014)

    Google Scholar 

  41. Semenov, M.E., Meleshenko, P.A., Nguyen, H.T.T., Klinskikh, A.F., Rukavitcyn, A.G.: Radiation of inverted pendulum with hysteretic nonlinearity. In: PIERS Proceedings, Guangzhou, China, August 25–28, pp. 1442–1445 (2014)

    Google Scholar 

  42. Semenov, M.E., Shevlyakova, D.V., Meleshenko, P.A.: Inverted pendulum under hysteretic control: stability zones and periodic solutions. Nonlinear Dyn. 75, 247–256 (2014)

    Article  MathSciNet  Google Scholar 

  43. Sieber, J., Krauskopf, B.: Complex balancing motions of an inverted pendulum subject to delayed feedback control. Physica D 197, 332–345 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Siuka, A., Schöberl, M.: Applications of energy based control methods for the inverted pendulum on a cart. Robot. Auton. Syst. 57, 1012–1017 (2009)

    Article  Google Scholar 

  45. Stephenson, A.: On an induced stability. Philos. Mag. 15, 233 (1908)

    Article  MATH  Google Scholar 

  46. Tang, J., Ren, G.: Modeling and simulation of a flexible inverted pendulum system. Tsinghua Sci. Technol. 14(Suppl. 2), 22–26 (2009)

    Article  MathSciNet  Google Scholar 

  47. Wang, J.J.: Simulation studies of inverted pendulum based on pid controllers. Simul. Model. Pract. Theor. 19, 440–449 (2011)

    Article  Google Scholar 

  48. Xu, C., Yu, X.: Mathematical model of elastic inverted pendulum control system. Control Theor. Technol. 2, 281–282 (2004)

    Article  Google Scholar 

  49. Yavin, Y.: Control of a rotary inverted pendulum. Appl. Math. Lett. 12, 131–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yue, J., Zhou, Z., Jiang, J., Liu, Y., Hu, D.: Balancing a simulated inverted pendulum through motor imagery: an eeg-based real-time control paradigm. Neurosci. Lett. 524, 95–100 (2012)

    Article  Google Scholar 

  51. Zhang, Y.X., Han, Z.J., Xu, G.Q.: Expansion of solution of an inverted pendulum system with time delay. Appl. Math. Comput. 217, 6476–6489 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the RFBR grant 13-08-00532-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail E. Semenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Semenov, M.E., Meleshenko, P.A., Solovyov, A.M., Semenov, A.M. (2015). Hysteretic Nonlinearity in Inverted Pendulum Problem. In: Belhaq, M. (eds) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-19851-4_22

Download citation

Publish with us

Policies and ethics