Skip to main content

Recent Advances of Structural Life Assessment and Related Problems

  • Conference paper
  • First Online:
Structural Nonlinear Dynamics and Diagnosis

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 168))

Abstract

Structural life assessment (SLA) is a diversified field and is based on the theories of fracture mechanics, fatigue damage process, probability of failure and reliability. SLA is not only governed by the theory of fracture mechanics and fatigue damage process, but by the type of loading. The theory of fracture mechanics may be classified into quasi-static fracture mechanic and dynamic fracture mechanics. The problem of singularity encountered in fracture mechanics has been resolved by the new theory of peridynamics described by integro-differential equation of motion. The basic ingredients of the theory of fracture mechanics will be presented in terms of linear elastic fracture mechanics (LEFM) and elasto-plastic fracture mechanics (EPFM) , dynamic fracture mechanics and peridynamics. The amount of energy available for fracture is usually governed by the stress field around the crack, which is measured by the stress intensity factor. SLA depends on the failure modes and the probabilistic description of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the term “rate” does not refer to derivative with respect to time. In this context it refers to derivative with respect to the size of the crack.

References

  1. Abraham, F.F.: Unstable crack motion is predictable. Adv. Phys. 53, 1071–1078 (2005)

    Google Scholar 

  2. Abraham, F.F., Brodbeck, D., Rafey, R.A., Rudge, W.E.: Instability dynamics of fracture: a computer simulation investigation. Phys. Rev. Lett. 73(2), 272–275 (1994)

    Article  ADS  Google Scholar 

  3. Abraham, F.F., Brodbeck, D., Rudge, W.E., Xu, X.P.: A molecular dynamics investigation of rapid fracture mechanics. J. Mech. Phys. Solids 45(9), 1595–1619 (1997)

    Article  ADS  MATH  Google Scholar 

  4. Adda-Bedia, M.: Brittle fracture dynamics with arbitrary paths III the branching instability under general loading. J. Mech. Phys. Solids 53, 227–248 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Askari, E., Xu, J., Silling, S.: Peridynamic analysis of damage and failure in composites. In Proceedings 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, Reston, VA, Paper #2006-88

    Google Scholar 

  6. Bar-Yoseph, P., Ben-David, D.: On mesh refinement methods of mixed hybrid finite elements for revealing the nature of the singularity in the free edge of a composite laminated plate. Commun. Appl. Numer. Methods 7, 315–324 (1991)

    Article  MATH  Google Scholar 

  7. Bar-Yoseph, P., Ben-David, D.: Free-edge effects in unsymmetrically laminated composite plates. Compos. Struct. 30(1), 13–23 (1995)

    Article  Google Scholar 

  8. Bouchbinder, E., Mathiesen, J., Procaccia, I.: Branching instabilities in rapid fracture: dynamics and geometry. Phys. Rev. E 71, 056118 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. Bouchbinder, E., Procaccia, I.: Oscillatory instability in two-dimensional dynamic fracture. Phys. Rev. Lett. 98, 124302 (2007)

    Article  ADS  Google Scholar 

  10. Bouchbinder, E., Lo, T.S.: Elastic nonlinearities in a one-dimensional model of fracture. Phys. Rev. E 78, 056105 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bouchbinder, E., Livne, A., Fineberg, J.: Weakly nonlinear theory of dynamic fracture. Phys. Rev. Lett. 101, 264302 (4p.) (2008)

    Google Scholar 

  12. Bouchbinder, E., Livne, A., Fineberg, J.: The 1/r singularity in weakly nonlinear fracture mechanics. J. Mech. Phys. Solids 57, 1568–1577 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bouchbinder, E., Livne, A., Fineberg, J.: Weakly nonlinear fracture mechanics: experiments and theory. Int. J. Fract. 162(1–2), 3–20 (2010a)

    Article  MATH  Google Scholar 

  14. Bouchbinder, E., Fineberg, J., Marder, M.: Dynamics of simple cracks. Annu. Rev. Conden. Matter Phys. 1, 371–395 (2010b)

    Article  ADS  Google Scholar 

  15. Broberg, K.B.: Cracks and Fracture. Academic Press, New York (1990)

    MATH  Google Scholar 

  16. Broek, D.: The Practical Use of Fracture Mechanics. 3rd ed., Kluwer Academic Press, Dordrecht (1994)

    Google Scholar 

  17. Buehler, M.J., Abraham, F.F., Gao, H.: Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003)

    Google Scholar 

  18. Buehler, M.J., Gao, H.: Biegen und Brechen im Supercomputer. Physik in unserer Zeit 35(1), (2004)

    Google Scholar 

  19. Buehler, M.J., Gao, H.: Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439, 307–310 (2006)

    Google Scholar 

  20. Buehler, M.J., Gao, H.J.: Modeling dynamic fracture using large-scale atomistic simulations. In: Shukla, A. (ed.) Dynamic Fracture Mechanics. World Scientific, Singapore (2007). Chapter 1

    Google Scholar 

  21. Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237–1250 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)

    Google Scholar 

  23. Colavito, K.W., Kilic, B., Celik, E., Madenci, E., Askari, E., Silling, S.: Effect of void content on stiffness and strength of composites by a peridynamic analysis and static indentation test. In: Proceedings 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, AIAA, Reston, VA, 2007a. Paper #2007-2251

    Google Scholar 

  24. Colavito, K.W., Kilic, B., Celik, E., Madenci, E., Askari, E., Silling, S.: Effects of nano-particles on stiffness and impact strength of composites. In: Proceedings 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, AIAA, Reston, VA, 2007b. Paper #2007-2021

    Google Scholar 

  25. Deegan, R.D., Chheda, S., Patel, L., Marder, M., Swinney, H.L., Kim, J., de Lozanne, A., et al.: Wavy and rough cracks in silicon. Phys. Rev. E 67(6), #066209 (2003)

    Google Scholar 

  26. Dimitrov, A., Andrä, H., Schnack, E.: Efficient computation of order and mode of corner singularities in 3D-elasticity. Int. J. Numer. Methods Eng. 52, 805–827 (2001)

    Article  MATH  Google Scholar 

  27. Dimitrov, A., Andrä, H., Schnack, E.: Singularities near three-dimensional corners in composite laminates. Int. J. Fract. 115(4), 361–375 (2002)

    Article  Google Scholar 

  28. Du, Q., Zhou, K.: Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM. Math. Model. Numer. Anal. 45(2), 217–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fineberg, J.: Close-up on cracks. Nature 426, 131–132 (2003)

    Article  ADS  Google Scholar 

  30. Fineberg, J.: The dynamics of rapidly moving tensile cracks in brittle amorphous material. In: Dynamic Fracture Mechanics, Chapter 1, pp. 104–146. World Scientific (2006)

    Google Scholar 

  31. Fineberg, J., Gross, S.P., Marder, M., Swinney, L.: Instability in dynamic fracture. Phys. Rev. Lett. 67(4), 457–462 (1991)

    Article  ADS  Google Scholar 

  32. Fineberg, J., Gross, S.P., Marder, M., Swinney, L.: Instability in the propagation of fast crack. Phys. Rev. B 45(10), 5146–5156 (1992)

    Article  ADS  Google Scholar 

  33. Fineberg, J., Gross, S.P., Sharon, E.: Micro-branching as an instability in dynamic fracture. In: Willis, J.R. (ed.) Proceedings IUTAM Conference on Micro-Branching as an Instability in Dynamic Fracture, pp. 177–190. Cambridge, U.K (1996)

    Google Scholar 

  34. Fineberg, J., Marder, M.: Instability in dynamic fracture. Phys. Rep. 313, 1–108 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  35. Freund, L.B.: Crack propagation in an elastic solid subjected to general loading, II: nonuniform rate of extension. J. Mech. Phys. Solids 20, 141–152 (1972)

    Article  ADS  Google Scholar 

  36. Freund, L.B.: The mechanics of dynamic fracture. In: Proceedings 10th U.S. National Congress of Applied Mechanics, Austin, TX (1986)

    Google Scholar 

  37. Freund, L.P.: Results on the influence of crack tip plasticity during dynamic crack growth. In: Final Report, Brown University, Division of Engineering, Providence, RI. 32p (1987)

    Google Scholar 

  38. Freund, L.B.: Dyn. Fract. Mech. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  39. Gao, H.: Surface roughening and branching instabilities in dynamic fracture. J. Mech. Phys. Solids 41(3), 457–486 (1993)

    Article  ADS  Google Scholar 

  40. Gao, H.: A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44(9), 1453–1474 (1996)

    Article  ADS  Google Scholar 

  41. Gao, H.: Elastic waves in a hyperelastic solid near its plane-strain equi-biaxial cohesive limit. Philos. Mag. Lett. 76(5), 307–314 (1997)

    Article  ADS  Google Scholar 

  42. Gerstle, W.H., Sau, N.: Peridynamic modeling of concrete structures. In: Proceedings 5th International Conference on Fracture Mechanics of Concrete and Concrete Structures: Fracture Mechanics of Concrete Structures, vol. 2, pp. 949–956. Ia-FraMCos, Evanston, IL (2004)

    Google Scholar 

  43. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. Lond. A 221, 163–198 (1921)

    Article  ADS  Google Scholar 

  44. Gross, S.P.: Dynamics of fast fracture. Ph.D. Dissertation, University of Texas, Austin (1995)

    Google Scholar 

  45. Gross, S.P., Fineberg, J., Marder, M., McCormick, W.D., Swinney, H.L.: Acoustic emission from rapidly moving cracks. Phys. Rev. Lett. 71, 3162–3165 (1993)

    Article  ADS  Google Scholar 

  46. Gu, Q., Reddy, J.N.: Nonlinear analysis of free-edge effects in composite laminates subjected to axial loads. Int. J. Nonlinear Mech. 27(1), 27–41 (1992)

    Article  MATH  Google Scholar 

  47. Gumbsch, P., Zhou, S.J., Holian, B.L.: Molecular dynamics investigation of dynamic crack instability. Phys. Rev. B 55, 3445 (1997)

    Article  ADS  Google Scholar 

  48. Henke, S.F.: Peridynamic modeling and simulation of polymer-nanotube composites. Ph.D. Dissertation, Florida State University, College of Arts and Science. Tallahassee, FL (2013)

    Google Scholar 

  49. Herakovich, C.T., Nagarkar, A., O’Brien, D.A.: Failure analysis of composite laminates with free edges. In: Vinson, J.R. (ed.) Modern Developments in Composite Materials and Structures, pp. 53–56. ASME (1979)

    Google Scholar 

  50. Holland, D., Marder, M.: Ideal brittle fracture of silicon studied with molecular dynamics. Phys. Rev. Lett. 80(4), 746–749 (1998)

    Article  ADS  Google Scholar 

  51. Irwin, G.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  52. Irwin, G.: Fracture. In: Flügge, S. (ed.) Handbuch der Physik, vol. 6, Flugge edn, pp. 551–590. Springer, Berlin (1958)

    Google Scholar 

  53. Kassapoglou, C.: An efficient method for the calculation of interlaminar stresses in composite materials. J. Appl. Mech. 53, 744–750 (1986)

    Article  ADS  Google Scholar 

  54. Katzav, E., Adda-Bedia, M., Arias, R.: Theory of dynamic branching in brittle materials. Int. J. Fract. 143, 245–271 (2007)

    Article  MATH  Google Scholar 

  55. Kilic, B.: Peridynamic theory for progressive failure prediction in composite materials. Ph.D. thesis, University of Arizona, Tucson, AZ (2008)

    Google Scholar 

  56. Kilic, B., Madenci, E.: Coupling of peridynamic theory and the finite element method. J. Mech. Mater. Struct. 5(5), 207–233 (2010)

    Article  Google Scholar 

  57. Lambros, J., Rosakis, A.J.: Dynamic decohesion of bi-materials: experimental observations and failure criteria. Int. J. Solids Struct. 32(17/18), 2677–2702 (1995a)

    Article  Google Scholar 

  58. Lambros, J., Rosakis, A.J.: Development of a dynamic decohesion criterion for subsonic fracture of the interface between two dissimilar materials. Proc. Roy. Soc. Lond. A 451, 711–736 (1995b)

    Article  ADS  Google Scholar 

  59. Livne, A., Cohen, G., Fineberg, J.: Universality and hysteretic dynamics in rapid fracture. Phys. Rev. Lett. 94, 224301 (2005)

    Article  ADS  MATH  Google Scholar 

  60. Livne, A., Ben-David, O., Fineberg, J.: Oscillations in rapid fracture. Phys. Rev. Lett. 98, 124301 (2007)

    Article  ADS  Google Scholar 

  61. Livne, A., Bouchbinder, E., Fineberg, J.: Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Phys. Rev. Lett. 101, 264301 (2008)

    Article  ADS  Google Scholar 

  62. Lynch, J.P., Law, K.H., O’Connor, S.: Probabilistic and Reliability-Based Health Monitoring Strategies for High-Speed Naval Vessels, 31p. Michigan University, Department of Electrical Engineering and Computer Science, Ann Arbor (2012)

    Google Scholar 

  63. Macek, R.W., Silling, S.A.: Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)

    Article  MathSciNet  Google Scholar 

  64. Marder, M., Gross, S.P.: Origin of crack tip instabilities. J. Mech. Phys. Solids 43, 1–48 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Marder, M., Fineberg, J.: How things break: solids fail through the propagation of cracks, whose speed is controlled by instabilities at the smallest scales, 12p. http://chaos.ph.utexas.edu/~marder/fracture/phystoday/how_things_break/how_things_brea

  66. Mittelstedt, C., Becker, W.: Free-edge effects in composite laminates. ASME Appl. Mech. Rev. 60(5), 217–245 (2007c)

    Article  ADS  Google Scholar 

  67. Murthy, P.L.N., Chamis, C.C.: Free-edge delamination: laminate width and loading condition effects. J. Compos. Technol. Res. 11, 15–22 (1989)

    Article  MATH  Google Scholar 

  68. Nemeth, M.P., Smeltzer, S.S., III.: Bending boundary layers in laminated-composite circular cylindrical shells. In: Proceedings 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference AIAA Paper No. 2000–1660, Atlanta, Georgia (2000)

    Google Scholar 

  69. Okasha, N.M., Frangopol, D.M.: Efficient method based on optimization and simulation for the probabilistic strength computation of the ship hull. J. Ship Res. 54(4), 1–13 (2010)

    Google Scholar 

  70. Okasha, N.M., Frangopol, D.M., Decò, A.: Integration of structural health monitoring in life-cycle performance assessment of ship structures under uncertainty. Mar. Struct. 23, 303–321 (2010)

    Article  Google Scholar 

  71. Pagano, N.J.: On the calculation of interlaminar normal stress in composite laminate. J. Compos. Mater. 8, 65–82 (1974)

    Article  ADS  Google Scholar 

  72. Pagano, N.G.: Stress fields in composite laminates. Int. J. Solids Struct. 14, 385–400 (1978a)

    Article  Google Scholar 

  73. Pagano, N.J.: Free-edge stress fields in composite laminates. Int. J. Solids Struct. 14, 401–406 (1978b)

    Article  MATH  Google Scholar 

  74. Pagano, N.J., Pipes, R.B.: Influence of stacking sequence on laminate strength. J. Compos. Mater. 5, 51–57 (1971)

    Google Scholar 

  75. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. ASME J. Basic Eng. 85(4), 528–534 (1963)

    Article  Google Scholar 

  76. Pipes, R.B., Pagano, N.J.: Interlaminar stresses in composite laminates under uniform axial extension. J. Compos. Mater. 4, 538–548 (1970)

    Google Scholar 

  77. Pipes, R.B., Kaminski, B.E., Pagano, N.J.: Influence of the free edge upon the strength of angle-ply laminates. In: Analysis of the Test Methods for High Modulus Fibers and Composites, ASTM STP 52.1, American Society for Testing and Materials, pp 218–228 (1973)

    Google Scholar 

  78. Pipes, R.B., Pagano, N.J.: Interlaminar stresses in composite laminates: an approximate elasticity solution. ASME J. Appl. Mech. 41(3), 668–672 (1974)

    Article  ADS  Google Scholar 

  79. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  ADS  Google Scholar 

  80. Rice, J.R.: Some remarks on the elastic crack-tip stress fields. Int. J. Solids Struct. 8, 751–758 (1972)

    Article  MATH  Google Scholar 

  81. Rittel, D., Maigre, H.: An investigation of dynamic crack initiation in PMMA. Mech. Mater. 23(3), 229–239 (1996)

    Article  Google Scholar 

  82. Sharon, E., Gross, S.P., Fineberg, J.: Local crack branching as a mechanism for instability in dynamic fracture. Phys. Rev. Lett. 74, 5146–5154 (1995)

    Article  ADS  Google Scholar 

  83. Sielski, R.A., Nahshon, K., Salvino, L.W., Anderson, K., Dow, N.: The ONR structural reliability program. In: ASNE Proceedings, 28p (2012)

    Google Scholar 

  84. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. Silling, S.A.: Dynamic fracture modeling with a meshfree peridynamic code. In: Bathe, K.J. (ed.) Comput. Fluid Solid Mech., pp. 641–644. Elsevier, Amsterdam (2003)

    Google Scholar 

  86. Silling, S.A.: Introduction to peridynamics, workshop on peridynamics, dissipative particle dynamics, and the Mori-Zwanzig formulation, Brown University (2012)

    Google Scholar 

  87. Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)

    Article  MathSciNet  Google Scholar 

  88. Silling, S.A., Askari, E.: Peridynamic modeling of impact damage. In: Moody, F.J. (ed.) PVP-489, pp. 197–205. American Society of Mechanical Engineers, New York (2004)

    Google Scholar 

  89. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  90. Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. NonLinear Mech. 40, 395–409 (2005)

    Article  ADS  MATH  Google Scholar 

  91. Silling, S.A., Lehoucq, R.: Peridynamic Theory of Solid Mechanics, Technical Report, Sandia National Laboraries, April 28, 2010. Albuquerque, New Mexico (2010)

    Google Scholar 

  92. Slepyan, L.I.: Dynamics of a crack in a lattice. Soviet Physics Doklady 26, 538–540 (1981)

    ADS  MATH  Google Scholar 

  93. Soni, S.R., Pagano, N.J.: Analysis of free edge effects in composite laminates. Sadhana11(3–4), 341–355 (1987)

    Google Scholar 

  94. Stroh, A.N.: A theory of the fracture of metals. Adv. Phys. 6, 418–465 (1957)

    Article  ADS  Google Scholar 

  95. Sun, C.T., Zhou, S.G.: Failure analysis of composite laminates with free edge. ASTM Int. 12(2), 7p (1990)

    MathSciNet  Google Scholar 

  96. Wang, J., Dickson, J.: Interlaminar stresses in symmetric composite laminates. J. Compos. Mater. 12, 390–402 (1978)

    Article  ADS  Google Scholar 

  97. Wang, S.S., Choi, I.: Boundary-layer effects in composite laminates: free-edge stress singularities, NASA CR 165440. In: Final Report—Part VI, NASA Lewis Research Center (1981)

    Google Scholar 

  98. Wang, S.S., Choi, I.: Boundary-layer effects in composite laminates. Part I—stress singularities. ASME J. Appl. Mech. 49(3), 541–548 (1982a)

    Article  ADS  MATH  Google Scholar 

  99. Wang, S.S., Choi, I.: Boundary layer effects in composite laminates. Part II—free-edge stress solutions and basic characteristics. ASME J. Appl. Mech. 49(3), 549–560 (1982b)

    Article  ADS  MATH  Google Scholar 

  100. Wang, S.S., Yuan, F.G.: A hybrid finite-element approach to laminate elasticity problems with stress singularities. ASME J. Appl. Mech. 50(4), 835–844 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  101. Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. Wilkins, D.J., Eisenmann, J.R., Camin, R.A., Margolis, W.S., Benson, R.A.: Characterizing delamination growth in graphite-epoxy. In: Damage in Composite Materials: Basic Mechanisms, Accumulation Tolerance, and Characterization, vol. 775, pp. 168–183. ASTM STP (1982)

    Google Scholar 

  103. Xu, J., Askari, A., Weckner, O., Razi, H., Silling, S.: Damage and failure analysis of composite laminates under biaxial loads. In: Proceedings 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Honolulu, HI, AIAA, Reston, VA, 2007. Paper #2007-2315

    Google Scholar 

  104. Yoffe, E.H.: The moving Griffith crack. Philos. Mag. 42, 739–750 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  105. Zhou, K.: The peridynamic theory of solid mechanics. Ph.D. Dissertation, Penn State University, Mathematics Department (2011)

    Google Scholar 

  106. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48, 1759–1780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from ONR under Award No: N00014-08-1-0647. Dr. Kelly B. Cooper is the Program Director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf A. Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ibrahim, R.A. (2015). Recent Advances of Structural Life Assessment and Related Problems. In: Belhaq, M. (eds) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-19851-4_1

Download citation

Publish with us

Policies and ethics