Skip to main content

Reactor and Laser Coupling

  • Chapter
Nuclear-Pumped Lasers

Abstract

This chapter discusses the design of how nuclear reactors are coupled to lasers. The design is complex in that there are many ways to interface the reactor, which serves as a neutron source, to the laser medium. There are issues with the fuel interface to the laser that includes the phase, the type of fuel, how the fuel is put into proximity to the laser medium and the potential chemical interactions of the fuel with the laser medium. The coupling of the optics to the laser medium is also an important consideration and how radiation damage may impact the optical components, structural materials and subsystems. There are also cooling and control issues as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prelas MA (1992) Solid state laser media driven by remote nuclear powered fluorescence, USA Patent 5,114,661, May 19, 1992

    Google Scholar 

  2. Prelas MA, Boody FP, Miley GH, Kunze JF (1988) Nuclear driven flashlamps. Laser Part Beams 6:25–62

    Article  Google Scholar 

  3. Prelas MA, Jones GL (1982) Design studies of volume‐pumped photolytic systems using a photon transport code. J Appl Phys 53:165–169

    Article  Google Scholar 

  4. Schlie LA, Rathge RD (1996) Repetitively pulsed, 70 Joule photolytic iodine laser with excellent optical and long/reliable operation. (Phillips Laboratory Laser and Imaging Directorate, ed). Kirtland Air Force Base, Albuquerque (Report PL-TR-96-1046)

    Google Scholar 

  5. Boody FP, Prelas MA, Anderson JH, Nagalingam SJS, Miley GH (1978) Progress in nuclear-pumped lasers. In: Billman K (ed) Radiation energy conversion in space, vol 61. AIAA, New York, pp 379–410

    Google Scholar 

  6. Miley GH, Nagalingham SJS, Boody FP, Prelas MA (1978) Production of XeF(B) by nuclear-pumping. In: Vincent J (ed) International conference on lasers 78, Orlando, Florida. Corcoran, Society for Optical & Quantum Electronics, STS Press, MacLean

    Google Scholar 

  7. Miley GH, Boody FP, Nagalingham SJS, Prelas MA (1978) Production of XeF(B-X) by nuclear-pumping. Bull Am Phys Soc 24:117

    Google Scholar 

  8. Miley GH, McArthur DA, Deyoung RJ, Prelas MA (1989) Fission reactor pumped laser: history and prospects. In: Carlson JW, Behrens AD (eds) 50 years of nuclear power, National Academy of Science and NIST. American Nuclear Society, LaGrange Park, IL, pp 333–342

    Google Scholar 

  9. Verdeyen JT (2000) Laser electronics. Prentice Hall, Inc., Upper Saddle River

    Google Scholar 

  10. Matovich E (1968) In pursuit of a pulsed homogeneous nuclear laser. IEEE J Quantum Electron 4:379–379

    Article  Google Scholar 

  11. Melnikov SP, Sizov AN, Sinyanskii AA, Miley GH (2015) Lasers with nuclear pumping. Springer, New York

    Book  Google Scholar 

  12. Prelas MA (1989) Nuclear-driven solid-state lasers. In: Lasers '89; Proceedings of the international conference, New Orleans, LA, Dec. 3–8, 1989 (A91-41326 17–36). STS Press, McLean, 1990, pp 263–269

    Google Scholar 

  13. Ponomarenko VP, Filachev AM (2007) Infrared techniques and electro-optics in russia: a history 1946–2006. SPIE Press, Washington, ISBN 978081946355

    Google Scholar 

  14. Watermann ML, Prelas MA (2013) Integrated solid-state nuclear pumped laser/reactor design for asteroid redirection. Trans Am Nucl Soc 109:1531–1532, November 2013

    Google Scholar 

  15. Chung A, Prelas M (1984) Charged particle spectra from U-235 and B-10 micropellets and slab coatings. Laser Part Beams 2:201–211

    Article  Google Scholar 

  16. Chung AK, Prelas MA (1984) The transport of heavy charged particles in a cylindrical nuclear-pumped plasma. Nucl Sci Eng 86:267–274

    Google Scholar 

  17. Platzmann RL (1961) Total ionization in gases by high energy particles: an appraisal of our understanding. Int J Appl Radiat Isot 10:116

    Article  Google Scholar 

  18. Prelas MA Nuclear pumped photolytic energy focus 1979 to 1981. Nuclear Science and Engineering Institute, University of Missouri, Columbia. doi:10.13140/RG.2.1.4169.0728

  19. Prelas M, Boody F (1982) Charged particle transport in uranium micropellets. In: 1982 IEEE International conference on plasma science, vol 82CH1770-7, Ottawa. doi:10.13140/RG.2.1.4967.4728

  20. Lee MYJJ, Simones MMP, Kennedy JC, Us H, Makarewicz MPF, Neher DJA (2014) Thorium fuel cycle for a molten salt reactor: state of missouri feasibility study. In: ASEE annual conference, Indianappolis, IN. ASEE, Washington, DC, p 28. Available: http://www.asee.org/public/conferences/32/papers/10990/view

  21. Mencin DJ, Prelas MA (1992) Gaseous like uranium reactors at low temperatures using C60 cages. In: Nuclear technologies for space exploration. vol. 2, NTSE '92. American Nuclear Society, La Grange Park, pp 403–433

    Google Scholar 

  22. Prelas MA, Loyalka SK (1981) A review of the utilization of energetic ions for the production of excited atomic and molecular states and chemical synthesis. Prog Nucl Energy 8:35–52

    Article  Google Scholar 

  23. Martin AF (1964) Apparatus for producing controllable slow neutron chain reaction, USA Patent US3154473 (A), October 27, 1964

    Google Scholar 

  24. Conner JWP, Davis WE (1962) Use of nuclear fission in synthesizing organic compounds, Patents, US 3065159 A

    Google Scholar 

  25. Fellows AT (1966) Method and contact material for chemical conversion in presence of nuclear fission fragments. USA Patent 3,228,848

    Google Scholar 

  26. Coelseberg EA (1958) Investigation of a nuclear fuel making it possible to use the kinetic energy of fission products for chemical synthesis. In: Second international conference on the peaceful uses of atomic energy, vol 29. Addison-Wesley, Reading, MA, p 424

    Google Scholar 

  27. McArthur DA, Tollefsrud PB (1975) Observation of laser action in CO gas excited only by fission fragments. Appl Phys Lett 26:187

    Article  Google Scholar 

  28. H. P. C. LTD (1957) Improvements in or relating to use of nuclear fission in synthesizing organic compounds. United Kingdom Patent GB 838361

    Google Scholar 

  29. Anderson A, Dominey D (1968) The radiolysis of carbon dioxide. Radiat Res Rev 1:269

    Google Scholar 

  30. Anderson RN, Selvadvray G, Goldstein MK (1981) Nuclear reactors capable of in-situ fuel processing. In: Alternative energy sources II. Hemisphere Publishing, New York, p 2339

    Google Scholar 

  31. Jalufka NW, DeYoung RJ, Hohl F, Williams MD (1976) Nuclear pumped 3He-Ar laser excited by the 3He(n, p )T reaction. Appl Phys Lett 29:189–190

    Article  Google Scholar 

  32. Prelas MA, Boody FP, Zediker M (1984) A direct energy conversion technique based on an aerosol core reactor concept. In: IEEE international conference on plasma science, 84CH1958-8, IEEE, New York, NY, p 8

    Google Scholar 

  33. Prelas MA, Boody FP, Zediker MS (1985) An aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers. In: El-Genk MS, Hoover M (eds) Space nuclear power systems. Orbit Book Company, Malabar

    Google Scholar 

  34. Prelas MA, Boody FP, Zediker MS (1984) Study of the basic transport properties (Charged particle transport, fluorescence transport & coupling efficiency) of the photon intermediate direct energy conversion technique, Research Gate. doi:10.13140/RG.2.1.4763.3121

  35. Prelas M, Kunze J, Boody F (1986) A compact aerosol core reactor/laser fueled with reflective micropellets. In: Hora H, Miley G (eds) Laser interaction and related plasma phenomena. Springer, Boston, pp 143–154

    Chapter  Google Scholar 

  36. Ghosh T, Prelas M (2009) Energy resources and systems, vol 1, Fundamentals and non-renewable resources. Springer, Dordrecht

    Book  Google Scholar 

  37. Prelas MA, Akerman MA, Boody FP, Miley GH (1977) Direct nuclear-pumped 1.45 μm atomic laser in mixtures of He-CO and He-CO2. Appl Phys Lett 31:679

    Article  Google Scholar 

  38. Henry AF (1975) Nuclear-reactor analysis. MIT Press, Cambridge

    Google Scholar 

  39. DOE-HDBK-1019/1-93 (1993) Nuclear physics and reactor theory, Department of Energy, Washington DC. Available: http://www.steamtablesonline.com/pdf/Nuclear-Volume1.pdf

  40. ThorEA_Wiki (2014) Thermal, epithermal and fast neutron spectra. Available: http://thorea.wikia.com/wiki/Thermal,_Epithermal_and_Fast_Neutron_Spectra. September 26, 2014

  41. LANL (2014) MCNPX. Available: https://mcnpx.lanl.gov/, February 9, 2015

  42. PolytechniqueMontreal (2014) Dragon code. Available: http://www.polymtl.ca/nucleaire/DRAGON/en/, February 9, 2015

  43. ORNL (2015) Radiation transport group. Available: http://web.ornl.gov/sci/nsed/rnsd/rt/code.shtml

  44. Lamarsh JR (1961) Introduction to nuclear reactor theory. Addison-Wesley, Reading

    Google Scholar 

  45. Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Wiley, New York

    Google Scholar 

  46. Kreyszig E (2000) Advanced engineering mathematics: maple computer guide. Wiley, New York

    Google Scholar 

  47. Kim TK, Yang WS, Taiwo TA, Khalil HS (2004) Whole-core depletion studies in support of fuel specification for the Next Generation Nuclear Plant (NGNP) core, Argonne National Laboratory Nuclear Energy Division (ed). U. S. Department of Energy, p 75. Available: http://www.ipd.anl.gov/anlpubs/2004/11/51497.pdf

  48. Guoxiang G, Prelas MA, Kunze JF (1986) Studies of an aerosol core reactor/laser’s critical properties. In: Hora H, Miley GH (eds) Laser interaction and related plasma phenomena. Springer, Boston, pp 603–611

    Chapter  Google Scholar 

  49. McArthur DA, Schmidt TR, Tollefsrud PB, Walker JV (1975) Preliminary designs for large (−1 MJ) reactor-driven laser systems. In: IEEE International Conference Plasma Science. University of Michigan, Ann Arbor, p 75

    Google Scholar 

  50. Schmidt TR, McArthur DA (1976) Neutronics analysis for a subcritical nuclear laser driver excited by a fast pulse reactor, Department_of_Energy (ed). Sandia National Laboratory, Albuquerque. Available: https://www.ntis.gov/Search/Home/titleDetail/?abbr=SAND760139

  51. McArthur D, Schmidt T, Philbin J, Tollefsrud P (1977) Concepts for the construction of large reactor-excited laser systems, Sandia National Laboratory, SAND76-0584. Available: http://www.osti.gov/scitech/biblio/5268082

  52. Tollefsrud PB (1976) A high energy flowing nuclear laser. In: Report of work-shop on direct nuclear pumping of lasers. Naval Postgraduate School, Monterey. Available: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790014704.pdf

  53. Rodgers RJ (1979) Initial conceptual design study of self-critical nuclear pumped laser systems, NASA (Ed). NASA Scientific and Technological Information Office, NASA, p 51. Available: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790014704.pdf

  54. DeYoung RJ, Shiu YJ, Williams MD (1980) Fission-fragment nuclear laSing of Ar(He)-Xe. Appl Phys Lett 37:2175–2177

    Google Scholar 

  55. Gu G (1987) Analysis of high power/energy nuclear pumped laser/reactor concepts. PhD, Nuclear Engineering, University of Missouri

    Google Scholar 

  56. Gu G-X, Prelas MA, Kunze JF (1987) Space based nuclear-pumped laser/reactor concepts. In: Genk ME, Hoover M (eds) Transactions of the fourth symposium on space nuclear power systems. Sandia National Laboratories, Albuquerque, pp 143–147

    Google Scholar 

  57. Prelas M, Boody F, Zediker M (1984) A direct energy conversion technique based on an aerosol core reactor concept. In: IEEE Publication, 84CH1958-8, IEEE, New York, NY, p 8

    Google Scholar 

  58. Prelas MA, Boody FP, Kunze JF (1986) A compact aerosol core reactor/laser fueled with reflective micropellets. In: Hora H, Miley GH (eds) Lasers and related plasma phenomena, vol 7. Plenum Press, New York

    Google Scholar 

  59. Gu G, Kunze JF, Boody FP, Prelas MA (1988) Neutronics conceptual design of a UF6-fueled gaseous laser system. In: Fifth symposium on space nuclear power systems 1988. Sandia National Laboratories, Albuquerque, p 24

    Google Scholar 

  60. Boody FP, Prelas MA (1992) Transient radiation-induced absorption in fused silica optical fibers, 450–950 nm. In: Proceedings of specialist conference on physics of nuclear induced plasmas and problems of nuclear-pumped lasers. Institute of Physics and Power Engineering, Obninsk. doi:10.13140/RG.2.1.4220.5923

  61. Brignon A (2013) Coherent laser beam combining. Wiley, New York

    Book  Google Scholar 

  62. Patel P (2014) Lockheed martin shows off high-power fiber laser weapon. IEEE Spectrum. Available: http://spectrum.ieee.org/tech-talk/aerospace/military/lockheed-martin-shows-off-highpower-fiber-laser-weapon, February 7, 2014

  63. APS Study Group on Science and Technology of Directed Energy Weapons (1987) Report to the APS of the study group on science and technology of directed energy weapons. Rev Mod Phys 59:S1–S202

    Article  Google Scholar 

  64. Eggleston J (1986) Steady-state coherent Raman beam combining with multiaxial mode lasers. IEEE J Quantum Electron 22:1942–1952

    Article  Google Scholar 

  65. Flusche BM, Alley TG, Russell IH, Roh WB (2006) Multi-port beam combination and cleanup in large multimode fiber using stimulated Raman Scattering. Opt Express 14:11747–11755, November 27, 2006

    Article  Google Scholar 

  66. Flusche BM (2006) Development of a multiple beam combiner using stimulated raman scattering in multimode fiber. MS, Department of Engineering Physics, Air Force Institute of Technology

    Google Scholar 

  67. Trainor DW, Smith MJ, Duzy C, Nicholson W, Appel C, Roberts T (1988) Xenon fluoride laser beam combining using stimulated raman scattering techniques. Proc SPIE 739:136–137

    Article  Google Scholar 

  68. Tyson RK (2010) Principles of adaptive optics. CRC Press, Baco Raton

    Book  Google Scholar 

  69. Boody FP, Prelas MA (1983) Photolytic dual-media nuclear pumping of excimer lasers. AIP Conf Proc 100:349

    Article  Google Scholar 

  70. Prelas MA (1979) Nuclear pumping mechanisms in atomic carbon and in excimers. In: Nuclear-pumped lasers, NASA Langley Research Center, Hampton, Virginia. Available: http://ntrs.nasa.gov/search.jsp?R=19800005190

  71. Prelas MA (1981) A potential UV fusion light bulb for energy conversion. Bull Am Phys Soc 26:1045

    Google Scholar 

  72. Prelas MA (1982) Nuclear powered space lasers: an evaluation of current technology, Nuclear-Pumped Laser Corporation, December 5, 1982. doi:10.13140/RG.2.1.1355.4405

  73. Prelas MA (1987) Photolytic pumping of solid-state Nd3+ doped lasers using nuclear-driven flashlamps, Idaho National Engineering Laboratory, Experimental design and testing of a nuclear-driven flashlamp to pump NdYAG January 1987–December 1987. doi:10.13140/RG.2.1.1547.6329

  74. Prelas MA (1991) Remote pumping of solid-state lasers with nuclear driven fluorescers, Department of Energy, Ed., DOE/ER/13029-T3, p. 1–35. Available: https://www.researchgate.net/publication/234355574_Remote_pumping_of_solid_state_lasers_with_nuclear_driven_fluorescers

  75. Prelas MA (1990) Nuclear-driven solid-state lasers. In: Shay DG, Harris TM (eds) Proceeding of the international conference on lasers 89. STS Press, MacLean

    Google Scholar 

  76. Boody FP, Prelas MA (1992) Design of a large-scale nuclear-driven fluorescer pumped solid-state laser system. In: Specialist conference on physics of nuclear induced plasmas and problems of nuclear-pumped lasers, vol 1. Institute of Physics and Power Engineering, Obninsk. doi:10.13140/RG.2.1.2123.4401

  77. Boody FP, Prelas MA (1991) Very high average power solid-state lasers pumped by remotely-located nuclear-driven fluorescers. In: Advanced solid-state lasers. Optical Society of America, Washington, DC, pp 192–199

    Google Scholar 

  78. Boody FP (1991) Nuclear-driven fluorescence pumped solid-state lasers PhD, Nuclear Engineering, University of Missouri, Columbia, MO, USA

    Google Scholar 

  79. Lin LTS (1994) Microwave and nuclear excitations of alkali metal vapors. PhD, Nuclear Engineering, University of Missouri

    Google Scholar 

  80. Taussig R et al (1979) Design investigation of solar powered lasers for space applications. Mathematical Sciences Northwest Incorporated, Bellevue WA. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a335155.pdf

  81. Lin LTS, Prelas MA, He Z, Bahns JT, Stwalley WC, Miley GH et al (1995) Design of an ICF plant using a nuclear-driven solid-state laser. Laser Part Beams 13:95

    Article  Google Scholar 

  82. Boody FP, Prelas MA (1992) Efficient light transport using large diameter-to-length ratio hollow lightpipes. In: Proceedings of specialist conference on physics of nuclear induced plasmas and problems of nuclear-pumped lasers, vol 1. Institute of Physics and Power Engineering, Obninsk. doi:10.13140/RG.2.1.3433.5207

  83. Prelas M, White N, Wisniewski D, Boraas M, Kasiwattanawut H, Walton K, Correa S, De Castro J, De-La-Torre-Aguilar F, Knewtson T, Nelson S, Schutte J, Tchouaso MT, Watterman M (2014) Design of a space based very high temperature reactor thermally pumped carbon dioxide laser. Nuclear Science and Engineering Institute, University of Columbia, Columbia

    Google Scholar 

  84. Lanin AG, Fedik II (2011) Selecting and using materials for a nuclear rocket engine reactor. Phys Usp 54:305–318

    Article  Google Scholar 

  85. Cheo PK (1979) CO2 Lasers. In: Levine AK, DeMaria AJ (eds) Lasers, vol 3. Marcel Dekker, New York

    Google Scholar 

  86. Manes KR, Seguin HJ (1972) Analysis of the CO2 TEA laser. J Appl Phys 43:5073–5078

    Article  Google Scholar 

  87. Yariv A (1976) Introduction to optical electronics. Holt, Rinehart and Winston, New York

    Google Scholar 

  88. Lawrence TJ (2005) Nuclear thermal rocket propulsion systems. DTIC Document. Available: http://www.usafa.edu/df/dfas/Papers/20042005/Nuclear%20Thermal%20Rocket%20Propulsion%20Systems%20-%20Lawrence.pdf

  89. Yang C, Chen H, Zheng C, Zhao X, Han H (2002) The progress of nuclear pumped laser in CFBR-II reactor. Chin Opt Lett 1:292–293

    Google Scholar 

  90. Select-Committee-United-States-House-of-Representatives (1999) U.S. National Security and Military/Commercial concerns with the People’s Republic of China. U.S. Government Printing Office, Report 105-851, Chapter 4 PRC Missile and Space Forces. Available: http://www.gpo.gov/fdsys/search/pagedetails.action?browsePath=105%2FHRPT%2F%5B800%3B%5D&granuleId=GPO-CRPT-105hrpt851-3&packageId=GPO-CRPT-105hrpt851&fromBrowse=true

  91. Prelas MA, Watermann ML, Wisniewski DA, Neher JA, Weaver CL (2014) A review of nuclear pumped lasers and applications (Asteroid deflection). In: ASEE 121st annual conference and exposition. ASEE, Indianapolis, p 27. Available: http://www.asee.org/public/conferences/32/papers/10774/view

  92. Forward RL (1995) Advanced propulsion systems. In: Humble RW, Henry GN, Larson WJ (eds) Space propulsion analysis and design. McGraw-Hill Co, New York, p 631

    Google Scholar 

  93. Bae YK (2012) Prospective of photon propulsion for interstellar flight. Phys Procedia 38:253–279

    Article  Google Scholar 

  94. Summerer L, Purcell O (2009) Concepts for wireless energy transmission via laser, Advanced-Concepts-Team (ed), European Space Agency. Available: http://www.esa.int/gsp/ACT/doc/POW/ACT-RPR-NRG-2009-SPS-ICSOS-concepts-for-laser-WPT.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prelas, M. (2016). Reactor and Laser Coupling. In: Nuclear-Pumped Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-19845-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19845-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19844-6

  • Online ISBN: 978-3-319-19845-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics