Skip to main content

Introduction to Nuclear-Pumped Lasers

  • Chapter
Nuclear-Pumped Lasers

Abstract

Nuclear-Pumped Lasers are lasers that are “pumped” by the products from nuclear reactions. In Chap. 1, the reader is introduced to lasers, the important components of a laser, some basic properties of lasers and how those properties can lead to solutions for problems requiring high-energy/high-power lasers. The development and understanding of these fundamentals are essential for the transitioning of the discussions into an understanding of the principles which are critical to nuclear-pumped laser research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miley GH, McArthur DA, Deyoung RJ, Prelas MA (1989) Fission reactor pumped laser: history and prospects. In: Carlson JW, Behrens AD (eds) 50 years of nuclear power, National Academy of Science and NIST. American Nuclear Society, Lagrange, IL, pp 333–342

    Google Scholar 

  2. Prelas MA, Loyalka SK (1981) A review of the utilization of energetic ions for the production of excited atomic and molecular states and chemical synthesis. Prog Nucl Energy 8:35–52

    Article  Google Scholar 

  3. Schmidt GR, Sutliff TJ, Dudzinski LA (2011) Radioisotope power: a key technology for deep space exploration, radioisotopes – applications in physical sciences (Singh N, ed). ISBN: 978-953-307-510-5, InTech. doi:10.5772/22041. Available from: http://www.intechopen.com/books/radioisotopes-applications-in-physical-sciences/radioisotope-power-a-key-technology-for-deep-space-exploration

    Google Scholar 

  4. Hatsopoulos GN, Gyftopoulos EP (1973) Thermionic energy conversion, vol. 1: processes and devices. The MIT Press, Cambridge, MA

    Google Scholar 

  5. Nelson RE (2003) A brief history of thermophotovoltaic development. Semicond Sci Technol 18:S141–S143

    Article  Google Scholar 

  6. Hunt TK, Weber N, Cole T (1981) High efficiency thermoelectric conversion with beta-alumina electrolytes, the sodium heat engine. Solid State Ion 5:263–266

    Article  Google Scholar 

  7. Fein ME, Verdeyen JT, Cherrington BE (1969) A thermally pumped CO2 laser. Appl Phys Lett 14:337–340

    Article  Google Scholar 

  8. Department of Energy (2013) In: I. N. Laboratory (ed) Summary of plutonium-238 production alternatives analysis final report. DOE Idaho Falls. Available: http://www5vip.inl.gov/technicalpublications/Documents/5753429.pdf

  9. Deus S (2000) Tritium-powered betavoltaic cells based on amorphous silicon. In: Photovoltaic specialists conference, 2000. Conference record of the twenty-eighth IEEE, New York, NY, pp 1246–1249

    Google Scholar 

  10. Duggirala R, Li H, Lal A (2008) High efficiency radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics. Appl Phys Lett 92:154104

    Article  Google Scholar 

  11. Watermann ML, Prelas MA (2013) Integrated solid-state nuclear pumped laser/reactor design for asteroid redirection. Trans Am Nucl Soc 109:1531

    Google Scholar 

  12. Prelas MA, Boody FP, Miley GH, Kunze JF (1988) Nuclear driven flashlamps. Laser Part Beams 6:25–62

    Article  Google Scholar 

  13. Boody FP, Prelas MA, Anderson JH, Nagalingam SJS, Miley GH (1978) Progress in nuclear-pumped lasers. In: Billman K, AIAA (eds) Radiation energy conversion in space, vol 61. AIAA, New York, pp 379–410

    Google Scholar 

  14. APS_Study_Group_on_Science_and_Technology_of_Directed_Energy_Weapons (1987) Report to the APS of the Study Group on Science and Technology of Directed Energy Weapons. Rev Mod Phys 59:S1–S202

    Google Scholar 

  15. Lyons P, Clarke J, Metzger D (1974) Gamma initiated HF laser. Quantum Electron IEEE J 10:736–736

    Article  Google Scholar 

  16. Ebert P, Ferderber L, Koehler H, Kuckuck R, Redhead D (1974) Amplified spontaneous emission in xenon pumped by gamma rays. Quantum Electron IEEE J 10:736–736

    Google Scholar 

  17. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Article  Google Scholar 

  18. Gordon JP, Zeiger HJ, Townes CH (1954) Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys Rev 95:282–284

    Article  Google Scholar 

  19. Gordon JP, Zeiger HJ, Townes CH (1955) The maser—new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev 99:1264–1274

    Article  Google Scholar 

  20. Wisoff PJ, Bowers MW, Erbert GV, Browning DF, Jedlovec DR (2004) NIF injection laser system. In: Proceedings of SPIE 5341, Optical engineering at the Lawrence Livermore national laboratory II: the national ignition facility, 28 May 2004. doi:10.1117/12.538466

  21. President_Dwight_D._Eisenhower (1953) Atom for peace. Available: http://www.eisenhower.archives.gov/research/online_documents/atoms_for_peace.html. August 15, 2014

  22. United_States_Nuclear_Regulatory_Commission (1955) Atoms for peace conference: international conference on the peaceful uses of atomic energy. U.S. Atomic Energy Commission, Geneva, August 1955

    Google Scholar 

  23. Kaufman S (2012) Project Plowshare: the peaceful use of nuclear explosives in Cold War America. Cornell University Press, Ithaca, NY

    Google Scholar 

  24. Goodchild P (2004) Edward Teller: the real Dr. Strangelove. Harvard University Press, Cambridge, MA

    Google Scholar 

  25. Regan PR (1983) Address to the nation on defense and national security. Available: http://www.reagan.utexas.edu/archives/speeches/1983/32383d.htm. August 16, 2014

  26. Rakhimova TV, Braginsky OV, Ivanov VV, Kim TK, Kong JT, Kovalev AS et al (2006) Experimental and theoretical study of RF plasma at low and high frequency. IEEE Trans Plasma Sci 34:867–877

    Article  Google Scholar 

  27. Peck M, Velez V, Ghosh T, Prelas M (2004) Generation and characterization of krypton and argon excimers from a microwave fluorescence lamp. Trans Am Nucl Soc 90:363–364

    Google Scholar 

  28. Ulrich A, Niessl C, Tomizawa H, Wieser J, Murnick DE, Salvermoser M (2000) Low-energy electron-beam-pumped lasers. In: Proceedings of SPIE 4071, International conference on atomic and molecular pulsed lasers III, 2, April 24, 2000. pp 2–8. doi:10.1117/12.383443

  29. Harvey EC, Shaw MJ (1991) A simple kinetic model for electron-beam-pumped KrF lasers. Laser Part Beams 9:659–673

    Article  Google Scholar 

  30. Sethian JD, Friedman M, Giuliani JL, Lehmberg RH, Obenschain SP, Kepple P et al (2003) Electron beam pumped KrF lasers for fusion energy. Phys Plasmas (1994-present) 10:2142–2146

    Article  Google Scholar 

  31. Verdeyen JT (2000) Laser electronics. Prentice Hall, Inc, Upper Saddle River

    Google Scholar 

  32. Fein ME, Verdeyen JT, Cherrington BE (1969) ERRATUM: a thermally‐pumped CO2 laser. Appl Phys Lett 15:128

    Article  Google Scholar 

  33. Hara H, Nakao S (1978) Enhancement of thermally pumped CO2 laser power by addition of Ar gas. Jpn J Appl Phys 17:971

    Article  Google Scholar 

  34. Hecht J (2011) Understanding lasers: an entry-level guide. Wiley, New York

    Google Scholar 

  35. Jirásek V, Čenský M, Špalek O, Kodymová J, Picková I, Jakubec I (2008) Chemical oxygen–iodine laser with atomic iodine generated via fluorine atoms. Chem Phys 345:14–22

    Article  Google Scholar 

  36. Truesdell KA, Helms CA, Hager GD (1994) History of chemical oxygen-iodine laser (COIL) development in the USA. In: Proceedings of SPIE 2502, Gas Flow and Chemical Lasers: Tenth International Symposium, 217 (September 23, 1994), pp 217–237. doi:10.1117/12.204917

  37. Grumman N (2014) Airborne Laser Testbed (ALTB), August 21, 2014, http://www.mda.mil/news/gallery_altb.html

  38. Ulrich A, Busch B, Krötz W, Ribitzki G, Wieser J, Murnick DE (1993) Heavy-ion beam pumping as a model for nuclear-pumped lasers. Laser Part Beams 11:509–519

    Article  Google Scholar 

  39. Ulrich A, Wieser J, Brunnhuber A, Krötz W (1994) Heavy ion beam pumped visible laser. Appl Phys Lett 64:1902–1904

    Article  Google Scholar 

  40. Ulrich A, Adonin A, Jacoby J, Turtikov V, Fernengel D, Fertman A et al (2006) Excimer laser pumped by an intense, high-energy heavy-ion beam. Phys Rev Lett 97:153901

    Article  Google Scholar 

  41. Adonin A (2007) Heavy ion beam pumped KrF* excimer laser. PhD, Physics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany

    Google Scholar 

  42. Repetti TE (1991) Application of reactor-pumped lasers to power beaming (ed), http://www.dtic.mil/dtic/tr/fulltext/u2/a338945.pdf

  43. Felty JR, Lipinski RJ, McArthur DA, Pickard PS (1993) DOE reactor-pumped laser program. Department of Energy, Washington, DC

    Google Scholar 

  44. Ghosh TK, Prelas MA (2009) Energy resources and systems: volume 1: fundamentals and non-renewable resources. Springer, Dordrecht

    Google Scholar 

  45. Prelas M, Miley G (1981) Dynamics of the nuclear and electrically pumped 1.45-μm atomic carbon laser in mixtures of Helium + CO and Helium + CO2. Nucl Technol/Fusion 1(3):402–413

    Google Scholar 

  46. Bennett WR Jr (1962) Optical spectra excited in high pressure noble gases by alpha impact. Ann Phys 18:367–420

    Article  Google Scholar 

  47. Dondes S, Harteck P, Kunz C (1966) A spectroscopic study of alpha-ray-induced luminescence in gases: part I. Radiat Res 27:174–210

    Article  Google Scholar 

  48. DeYoung RJ, Weaver WR (1980) Spectra from nuclear-excited plasmas. J Opt Soc Am 70:500–506

    Article  Google Scholar 

  49. Lecours MJ, Prelas MA, Gunn S, Edwards C, Schlapper G (1982) Design, construction, and testing of a nuclear pumping facility at the University of Missouri Research Reactor. Rev Sci Instrum 53:952–959

    Article  Google Scholar 

  50. Melnikov SP, Puning VT, Sinyanskii AA (2008) Gas lasers with nuclear pumping: physical processes and experimental techniques. Federal Agency for Education, Moscow Engineering Physics Institute, Moscow, Russia

    Google Scholar 

  51. Melnikov SP, Sizov AN, Sinyanskii AA, Miley GH (2015) Lasers with nuclear pumping. Springer, New York

    Book  Google Scholar 

  52. Lofthus A, Krupenie PH (1977) The spectrum of molecular nitrogen. J Phys Chem Ref Data 6:113–307

    Article  Google Scholar 

  53. NIST (2015) Strong lines in helium. Available: http://physics.nist.gov/PhysRefData/Handbook/Tables/heliumtable2.htm

  54. NIST (2015) Strong lines in nitrogen. Available: http://physics.nist.gov/PhysRefData/Handbook/Tables/nitrogentable2.htm

  55. NIST (2015) Strong lines in oxygen. Available: http://physics.nist.gov/PhysRefData/Handbook/Tables/oxygentable2.htm

  56. Miley GH, Boody FP, Nagalingham SJS, Prelas MA (1978) Production of XeF(B-X) by nuclear-pumping. In: Corcoran VJ (ed) Proceedings of the international conference on laser. Society for Optical & Quantum Electronics STS Press, 1979 – Technology & Engineering, MacLean

    Google Scholar 

  57. Boody FP, Miley GH (1979) Data on XeBr* which indicated a 15% efficiency. Nuclear Engineering Department, University of Illinois at Champaign-Urbana (unpublished)

    Google Scholar 

  58. Miley GH, Nagalingham SJS, Boody FP, Prelas MA (1978) Production of XeF(B) by nuclear-pumping. In: Proceedings of the international conference on lasers 78, Orlando Florida, Proceedings (A79-51401 23–36). STS Press, McLean, 1979, pp 5–13

    Google Scholar 

  59. Prelas M (1979) Nuclear pumping mechanisms in atomic carbon and in excimers. In: Nuclear-pumped lasers, pp 41–43 (SEE N80-13438 04–36), 1979. NASA Langley Research Center, Hampton, VA, pp 41–43

    Google Scholar 

  60. Miley GH, Prelas MA (2004) Neutron-pumped excimer flashlamp sources. In: Proceedings of SPIE 5196, Laser-generated and other laboratory X-ray and EUV sources, optics, and applications, January 7, 2004, pp 263–272. doi:10.1117/12.504396

  61. Boody FP, Prelas MA (1992) Efficient visible nuclear-driven fluorescer lamps. In: Proceedings of specialist conference on physics of nuclear induced plasmas and problems of nuclear-pumped lasers, USSR, Obninsk, 05/1992, pp 161–165. doi:10.13140/RG.2.1.1599.1525

  62. Boody FP, Prelas MA (1992) Absolutely calibrated spectra of nuclear driven rare gases, 400–950 nm. In: Proceedings of specialist conference on physics of nuclear induced plasmas and problems of nuclear-pumped lasers. Institute of Physics and Power Engineering, USSR, Obninsk, pp 149–155. doi:10.13140/RG.2.1.3172.0167

  63. Prelas MA (1989) Nuclear-driven solid-state lasers. In: Proceedings of the international conference on lasers 1989, New Orleans, LA. doi:10.13140/RG.2.1.3178.8000

  64. Prelas MA (1985) Excimer research using nuclear-pumping facilities, (ed) National Science Foundation: NSF, pp 1–131. doi:10.13140/RG.2.1.3714.7366

  65. Prelas MA (1991). In: Department_of_Energy (ed) Remote pumping of solid-state lasers with nuclear driven fluorescers. DOE/ER/13029-T3, pp 1–35

    Google Scholar 

  66. Lin L-TS (1994) Microwave and nuclear excitation of Alkali metal vapors. PhD, Nuclear Engineering, University of Missouri, Columbia, MO

    Google Scholar 

  67. Prelas MA, Weaver CL, Watermann ML, Lukosi ED, Schott RJ, Wisniewski DA (2014) A review of nuclear batteries. Prog Nucl Energy 75:117–148

    Article  Google Scholar 

  68. DOE-HDBK-1019/1-93 (1993) Nuclear physics and reactor theory. Department of Energy, Washington, DC

    Google Scholar 

  69. SPIE (2014) SPIE virtual laser exhibit: 1960–1969. Available: http://spie.org/x39920.xml. August 12, 2014

  70. Zhou B, Kane TJ, Dixon GJ, Byer RL (1985) Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Opt Lett 10:62–64

    Article  Google Scholar 

  71. Yariv A (1971) Introduction to optical electronics. Holt, Rinehart and Winston, Inc, New York

    Google Scholar 

  72. Carter AB (1984) Directed energy missile defense in space–a background paper. NTIS, Alexandria, VA

    Google Scholar 

  73. Cobine JD (1958) Gaseous conductors: theory and engineering applications. Dover, New York

    MATH  Google Scholar 

  74. Freiberg RJ, O’Clark P (1970) CO2 transverse-discharge lasers. IEEE J Quan Electron QE-6:105–113, February 1970

    Google Scholar 

  75. Verdeyen JT (1995) Laser electronics. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  76. Yariv A (1976) Introduction to optical electronics. Holt, Rinehart and Winston, New York

    Google Scholar 

  77. Shwartz J, Gerald TW, Avidor JM (2002) Tactical high-energy laser. In: Proceedings of SPIE 4632, Laser and beam control technologies, 10 (June 5, 2002). doi:10.1117/12.469758

  78. GSI (2014) Images database. Available: https://www.gsi.de/de/presse_medien/mediathek/bilderdatenbank.htm?nr=805#c4441. August 22

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prelas, M. (2016). Introduction to Nuclear-Pumped Lasers. In: Nuclear-Pumped Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-19845-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19845-3_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19844-6

  • Online ISBN: 978-3-319-19845-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics