Skip to main content

Simulating Forest Landscape Disturbances as Coupled Human and Natural Systems

  • Chapter
  • First Online:
Simulation Modeling of Forest Landscape Disturbances

Abstract

Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. For Ecol Manage 211(1–2):83–96

    Google Scholar 

  • Ager AA, Valliant NM, Finney MA (2010) A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For Ecol Manage 259(8):1556–1570

    Google Scholar 

  • Akcakaya HR, Radeloff VC, Mlandenoff DJ, He HS (2004) Integrating landscape and metapopulation modeling approaches: viability of the sharp-tailed grouse in a dynamic landscape. Conserv Biol 18(2):526–537

    Google Scholar 

  • Andam KS, Ferraro PJ, Sims KR, Healy A, Holland MB (2010) Protected areas reduced poverty in Costa Rica and Thailand. Proc Natl Acad Sci USA 107(22):9996–10001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barreto L, Schoorl JM, Kok K, Veldkamp T, Hass A (2013) Modelling potential landscape sediment delivery due to projected soybean expansion: a scenario study of the sub-basin, Cerrado, MaranhĂŁo state, Brazil. J Environ Manage 115:270–277

    PubMed  Google Scholar 

  • Baskent EZ (1997) Assessment of structural dynamics in forest landscape management. Can J For Res 27(10):1675–1684

    Google Scholar 

  • Bell EJ (1974) Markov analysis of land use change—an application of stochastic processes to remotely sensed data. Socio Econ Plan Sci 8(6):311–316

    Google Scholar 

  • Berry AH, Hesseln H (2004) The effect of the wildland–urban interface on prescribed burning costs in the Pacific Northwestern United States. J For 102(6):33–37

    Google Scholar 

  • Bettinger P, Johnson KN (2003) Spatial scheduling of forest management activities using a dynamic deterministic harvest block aggregation process. J For Plan 9(1):25–34

    Google Scholar 

  • Bettinger P, Lennette M, Johnson KN, Spies TA (2005) A hierarchical spatial framework for forest landscape planning. Ecol Model 182(1):25–48

    Google Scholar 

  • Bierwagen BG, Theobald DM, Pyke CR, Choate A, Groth P, Thomas JV, Morefield P (2010) National housing and impervious surface scenarios for integrated climate impact assessments. Proc Natl Acad Sci USA 107(49):20887–20892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bodin Ă–, Tengö M, Norman A, Lundberg J, Elmqvist T (2006) The value of small size: loss of forest patches and ecological thresholds in southern Madagascar. Ecol Appl 16(2):440–451

    PubMed  Google Scholar 

  • Boychuk D, Perera AH (1997) Modeling temporal variability of boreal landscape age classes under different fire disturbance regimes and spatial scales. Can J For Res 27:1083–1094

    Google Scholar 

  • Brown DG, Pijanowski BC, Duh JD (2000) Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. J Environ Manage 59(4):247–263

    Google Scholar 

  • Bu R, He HS, Hu Y, Chang Y, Larsen DR (2008) Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in Northeastern China. For Ecol Manage 254:407–419

    Google Scholar 

  • Carter NH, Shrestha BK, Karki JB, Pradhan NMB, Liu J (2012) Coexistence between wildlife and humans at fine spatial scales. Proc Natl Acad Sci USA 109(38):15360–15365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castella J-C, Trung TN, Boissau S (2005) Participatory simulation of land-use changes in the northern mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol Soc 10(1):27

    Google Scholar 

  • Chew JD, Stalling C, Moeller K (2004) Integrating knowledge for simulating vegetation change at landscape scales. West J Appl For 19(2):102–108

    Google Scholar 

  • Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404(6781):990–992

    CAS  PubMed  Google Scholar 

  • Claessens L, Schoorl JM, Verburg PH, Geraedts L, Veldkamp A (2009) Modelling interactions and feedback mechanisms between land use change and landscape processes. Agr Ecosys Environ 129(1–3):157–170

    Google Scholar 

  • Claggett PR, Jantz CA, Goetz SJ, Bisland C (2004) Assessing development pressure in the Chesapeake Bay Watershed: an evaluation of two land-use change models. Environ Monit Assess 94(1–3):129–146

    PubMed  Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B 24:247–261

    Google Scholar 

  • Cochrane MA, Barber CP (2009) Climate change, human land use and future fires in the Amazon. Glob Change Biol 15(3):601–612

    Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284(5421):1832–1835

    CAS  PubMed  Google Scholar 

  • Curran LM, Trigg SN, McDonald AK, Astiani D, Hardiono Y, Siregar P, Caniago I, Kasischke E (2004) Lowland forest loss in protected areas of Indonesian Borneo. Science 303(5660):1000–1003

    CAS  PubMed  Google Scholar 

  • de Filho FJBO, Metzger JP (2006) Thresholds in landscape structure for three common deforestation patterns in the Brazilian Amazon. Landscape Ecol 21(7):1061–1073

    Google Scholar 

  • Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire 12(2):117–128

    Google Scholar 

  • Fisher R, McDowell N, Purves D, Moorcroft P, Sitch S, Cox P, Huntingford C, Meir P, Woodward FI (2010) Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol 187(3):666–681

    PubMed  Google Scholar 

  • Foster DR (1992) Land-use history (1730–1990) and vegetation dynamics in central New England, USA. J Ecol 80(4):753–772

    Google Scholar 

  • Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen JQ (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage 155(1–3):399–423

    Google Scholar 

  • Fraser JS, He HS, Shifley SR, Wang WJ, Thompson FR (2013) Simulating stand-level harvest prescriptions across landscapes: LANDIS PRO harvest module design. Can J For Res 43:972–978

    Google Scholar 

  • Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 52(2):143–150

    Google Scholar 

  • Guan D, Gao W, Watari K, Fukahori H (2008) Land use change of Kitakyushu based on landscape ecology and Markov model. J Geogr Sci 18(4):455–468

    Google Scholar 

  • Gustafson EJ, Crow TR (1996) Simulating the effects of alternative forest management strategies on landscape structure. J Environ Manage 46(1):77–94

    Google Scholar 

  • Gustafson EJ, Sturtevant BR (2013) Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems 16(1):60–74

    Google Scholar 

  • Gustafson EJ, Shifley SR, Mladenoff DJ, Nimerfro KK, He HS (2000) Spatial simulation of forest succession and timber harvesting using LANDIS. Can J For Res 30(1):32–43

    Google Scholar 

  • Gustafson EJ, Shvidenko AZ, Sturtevant BR, Scheller RM (2010) Predicting global change effects on forest biomass and composition in south-central Siberia. Ecol Appl 20(3):700–715

    PubMed  Google Scholar 

  • He HS (2008) Forest landscape models: definitions, characterization, and classification. For Ecol Manage 254(3):484–498

    Google Scholar 

  • He HS, Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80(1):81–99

    Google Scholar 

  • He HS, Shang BZ, Crow TR, Gustafson EJ, Shifley SR (2004) Simulating forest fuel and fire risk dynamics across landscapes—LANDIS fuel module design. Ecol Model 180(1):135–151

    Google Scholar 

  • Hernández Encinas L, Hoya White S, MartĂ­n del Rey A, RodrĂ­guez Sánchez G (2007) Modelling forest fire spread using hexagonal cellular automata. Appl Math Model 31(6):1213–1227

    Google Scholar 

  • Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sens Environ 86(3):286–302

    Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334(6053):232–235

    CAS  PubMed  Google Scholar 

  • Horn HS (1975) Markovian properties of forest succession. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press, Cambridge, pp 196–211

    Google Scholar 

  • Jantz CA, Goetz SJ, Donato D, Claggett P (2010) Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comp Environ Urban 34(1):1–16

    Google Scholar 

  • Johnson KN, Bettinger P, Kline JD, Spies TA, Lennette M, Lettman G, Garber-Yonts B, Larsen T (2007) Simulating forest structure, timber production, and socioeconomic effects in a multi-owner province. Ecol Appl 17(1):34–47

    PubMed  Google Scholar 

  • Johnston F, Bowman D (2014) Bushfire smoke: an exemplar of coupled human and natural systems. Geogr Res 52(1):45–54

    Google Scholar 

  • Jones JA, Swanson FJ, Wemple BC, Snyder KU (2000) Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conserv Biol 14(1):76–85

    Google Scholar 

  • Karafyllidis I, Thanailakis A (1997) A model for predicting forest fire spreading using cellular automata. Ecol Model 99(1):87–97

    Google Scholar 

  • Karam SL, Weisberg PJ, Scheller RM, Johnson DW, Miller W (2013) Development and evaluation of a nutrient cycling extension for the LANDIS-II landscape simulation model. Ecol Model 250:45–57

    CAS  Google Scholar 

  • Karau EC, Keane RE (2007) Determining landscape extent for succession and disturbance simulation modeling. Landscape Ecol 22(7):993–1006

    Google Scholar 

  • Keane RE, Parsons RA, Hessburg PF (2002) Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach. Ecol Model 151(1):29–49

    Google Scholar 

  • Keane RE, Holsinger LM, Pratt SD (2006) Simulating historical landscape dynamics using the landscape fire succession model LANDSUM version 4.0. USDA Forest Service Rocky Mountain Research Station, Fort Collins

    Google Scholar 

  • Kline JD, Azuma DL, Moses A (2003) Modeling the spatially dynamic distribution of humans in the Oregon (USA) Coast Range. Landscape Ecol 18(4):347–361

    Google Scholar 

  • Kline JD, Azuma DL, Alig RJ (2004) Population growth, urban expansion, and private forestry in western Oregon. For Sci 50(1):33–43

    Google Scholar 

  • Lamsal A, Wimberly MC, Liu Z, Sohl TL (2014) A simulation model of human-natural interactions in dynamic landscapes. In: Ames DP, Quinn NWT, Rizzoli AE (eds) Proceedings of 7th international congress on environmental modelling and software, San Diego, CA. International Environmental Modelling and Software Society (iEMSs)

    Google Scholar 

  • Laurance WF, Ferreira LV, Rankin-De Merona JM, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79(6):2032–2040

    Google Scholar 

  • Leahy JE, Gorczyca EL (2013) Agent-based modeling of harvest decisions by small scale forest landowners in Maine, USA. Int J For Res 2013:563068

    Google Scholar 

  • Li H, Franklin J, Swanson F, Spies T (1993) Developing alternative forest cutting patterns: a simulation approach. Landscape Ecol 8(1):63–75

    Google Scholar 

  • Li C, Ter-Mikaelian M, Perera A (1997) Temporal fire disturbance patterns on a forest landscape. Ecol Model 99(2):137–150

    Google Scholar 

  • Lindenmayer DB, Hobbs RJ, Likens GE, Krebs CJ, Banks SC (2011) Newly discovered landscape traps produce regime shifts in wet forests. Proc Natl Acad Sci USA 108(38):15887–15891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199(4):409–420

    Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J (2007a) Complexity of coupled human and natural systems. Science 317(5844):1513–1516

    CAS  PubMed  Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Folke C, Alberti M, Redman CL, Schneider SH, Ostrom E, Pell AN, Lubchenco J (2007b) Coupled human and natural systems. Ambio 36(8):639–649

    PubMed  Google Scholar 

  • Liu X, Li X, Shi X, Wu S, Liu T (2008) Simulating complex urban development using kernel-based non-linear cellular automata. Ecol Model 211(1):169–181

    Google Scholar 

  • Liu X, Sun R, Yang Q, Su G, Qi W (2012) Simulating urban expansion using an improved SLEUTH model. J Appl Remote Sens 6(1):061709

    Google Scholar 

  • Liu J, Hull V, Batistella M, DeFries R, Dietz T, Fu F, Hertel TW, Izaurralde RC, Lambin EF, Li S (2013) Framing sustainability in a telecoupled world. Ecol Soc 18(2):26

    CAS  Google Scholar 

  • Liu Z, Wimberly MC, Lamsal A, Sohl TL, Hawbaker TJ (2014) Coupled simulation of human-driven and natural land cover change in the Front Range Corridor, CO. In: Ames DP, Quinn NWT, Rizzoli AE (eds) Proceedings of 7th international congress on environmental modelling and software, San Diego, CA. International Environmental Modelling and Software Society (iEMSs)

    Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Piñol J (2011) An integrative model of human–influenced fire regimes and landscape dynamics. Environ Model Softw 26(8):1028–1040

    Google Scholar 

  • LĂłpez-Carr D, Davis J, Jankowska MM, Grant L, LĂłpez-Carr AC, Clark M (2012) Space versus place in complex human–natural systems: spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol Model 229:64–75

    Google Scholar 

  • Manson SM, Evans T (2007) Agent-based modeling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States. Proc Natl Acad Sci USA 104(52):20678–20683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM (2007) Agent-based land-use models: a review of applications. Landscape Ecol 22(10):1447–1459

    Google Scholar 

  • McDonald RI, Yuan-Farrell C, Fievet C, Moeller M, Kareiva P, Foster D, Gragson T, Kinzig A, Kuby L, Redman C (2007) Estimating the effect of protected lands on the development and conservation of their surroundings. Conserv Biol 21(6):1526–1536

    PubMed  Google Scholar 

  • McGarigal K, Romme WH, Crist M, Roworth E (2001) Cumulative effects of roads and logging on landscape structure in the San Juan Mountains, Colorado (USA). Landscape Ecol 16(4):327–349

    Google Scholar 

  • Meentemeyer RK, Haas SE, VáclavĂ­k T (2012) Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu Rev Phytopathol 50:379–402

    CAS  PubMed  Google Scholar 

  • Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland–urban interface fire problem–current approaches and research needs. Int J Wildland Fire 19(2):238–251

    Google Scholar 

  • Moreira E, Costa S, Aguiar AP, Câmara G, Carneiro T (2009) Dynamical coupling of multiscale land change models. Landscape Ecol 24(9):1183–1194

    Google Scholar 

  • Narayanaraj G, Wimberly MC (2011) Influences of forest roads on the spatial pattern of wildfire boundaries. Int J Wildland Fire 20(6):792–803

    Google Scholar 

  • Narayanaraj G, Wimberly MC (2012) Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. Appl Geogr 32(2):878–888

    Google Scholar 

  • Naughton-Treves L, Alix-Garcia J, Chapman CA (2011) Lessons about parks and poverty from a decade of forest loss and economic growth around Kibale National Park, Uganda. Proc Natl Acad Sci USA 108(34):13919–13924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc B 363(1498):1737–1746

    Google Scholar 

  • Ozah AP, Dami A, Adesina FA (2012) A deterministic cellular automata model for simulating rural land use dynamics: a case study of Lake Chad Basin. J Earth Sci Eng 2(1):22–34

    Google Scholar 

  • Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the HJ Andrews experimental forest, Oregon. Conserv Biol 14(1):64–75

    Google Scholar 

  • Perez L, Dragicevic S (2010) Modeling mountain pine beetle infestation with an agent-based approach at two spatial scales. Environ Model Softw 25(2):223–236

    Google Scholar 

  • Perez L, Dragicevic S (2012) Landscape-level simulation of forest insect disturbance: coupling swarm intelligent agents with GIS-based cellular automata model. Ecol Model 231:53–64

    Google Scholar 

  • Petit C, Scudder T, Lambin E (2001) Quantifying processes of land-cover change by remote sensing: resettlement and rapid land-cover change in south-eastern Zambia. Int J Remote Sens 22(17):3435–3456

    Google Scholar 

  • Pontius RG, Cornell JD, Hall CA (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agr Ecosys Environ 85(1):191–203

    Google Scholar 

  • Radeloff VC, Stewart SI, Hawbaker TJ, Gimmi U, Pidgeon AM, Flather CH, Hammer RB, Helmers DP (2010) Housing growth in and near United States protected areas limits their conservation value. Proc Natl Acad Sci USA 107(2):940–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson DT, Brown DG (2009) Evaluating the effects of land-use development policies on ex-urban forest cover: an integrated agent-based GIS approach. Int J Geogr Inf Sci 23(9):1211–1232

    Google Scholar 

  • Roy ED, Morzillo AT, Seijo F, Reddy SM, Rhemtulla JM, Milder JC, Kuemmerle T, Martin SL (2013) The elusive pursuit of interdisciplinarity at the human—environment interface. Bioscience 63(9):745–753

    Google Scholar 

  • Ryu S-R, Chen J, Zheng D, Bresee MK, Crow TR (2006) Simulating the effects of prescribed burning on fuel loading and timber production (EcoFL) in managed northern Wisconsin forests. Ecol Model 196(3):395–406

    Google Scholar 

  • Schaldach R, Priess JA, Alcamo J (2011) Simulating the impact of biofuel development on country-wide land-use change in India. Biomass Bioenerg 35(6):2401–2410

    Google Scholar 

  • Scheller RM, Mladenoff DJ (2007) An ecological classification of forest landscape simulation models: tools and strategies for understanding broad-scale forested ecosystems. Landscape Ecol 22(4):491–505

    Google Scholar 

  • Scheller RM, Hua D, Bolstad PV, Birdsey RA, Mladenoff DJ (2011) The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic Forests. Ecol Model 222(1):144–153

    CAS  Google Scholar 

  • Seidl R, Rammer W, Scheller RM, Spies TA (2012) An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model 231:87–100

    Google Scholar 

  • Shang BZ, He HS, Crow TR, Shifley SR (2004) Fuel load reductions and fire risk in central hardwood forests of the United States: a spatial simulation study. Ecol Model 180(1):89–102

    Google Scholar 

  • Shang Z, He HS, Lytle DE, Shifley SR, Crow TR (2007) Modeling the long-term effects of fire suppression on central hardwood forests in Missouri Ozarks, using LANDIS. For Ecol Manage 242(2):776–790

    Google Scholar 

  • Shugart H, Crow T, Hett J (1973) Forest succession models: a rationale and methodology for modeling forest succession over large regions. Forest Sci 19(3):203–212

    Google Scholar 

  • Silvestrini RA, Soares-Filho BS, Nepstad D, Coe M, Rodrigues H, Assunção R (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol Appl 21(5):1573–1590

    PubMed  Google Scholar 

  • Smithwick EAH, Harmon ME, Domingo JB (2007) Changing temporal patterns of forest carbon stores and net ecosystem carbon balance: the stand to landscape transformation. Landscape Ecol 22(1):77–94

    Google Scholar 

  • Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440(7083):520–523

    CAS  PubMed  Google Scholar 

  • Soares-Filho B, Silvestrini R, Nepstad D, Brando P, Rodrigues H, Alencar A, Coe M, Locks C, Lima L, Hissa L, Stickler C (2012) Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landscape Ecol 27(4):585–598

    Google Scholar 

  • Sohl T, Sayler K (2008) Using the FORE-SCE model to project land-cover change in the southeastern United States. Ecol Model 219(1–2):49–65

    Google Scholar 

  • Sohl TL, Sleeter BM, Zhu Z, Sayler KL, Bennett S, Bouchard M, Reker R, Hawbaker T, Wein A, Liu S, Kanengieter R, Acevedo W (2012) A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Appl Geogr 34:111–124

    Google Scholar 

  • Spies TA, Johnson KN, Burnett KM, Ohmann JL, McComb BC, Reeves GH, Bettinger P, Kline JD, Garber-Yonts B (2007) Cumulative ecological and socioeconomic effects of forest policies in Coastal Oregon. Ecol Appl 17(1):5–17

    PubMed  Google Scholar 

  • Stanilov K, Batty M (2011) Exploring the historical determinants of urban growth patterns through cellular automata. Trans GIS 15(3):253–271

    Google Scholar 

  • Stanturf JA, Schweitzer CJ, Gardiner ES (1998) Afforestation of marginal agricultural land in the Lower Mississippi River Alluvial Valley, USA. Silva Fennica 32:281–297

    Google Scholar 

  • Sturtevant BR, Miranda BR, Yang J, He HS, Gustafson EJ, Scheller RM (2009a) Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire-dependent ecosystems and fire risk. Ecosystems 12(3):445–461

    Google Scholar 

  • Sturtevant BR, Scheller RM, Miranda BR, Shinneman D, Syphard A (2009b) Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II. Ecol Model 220(23):3380–3393

    Google Scholar 

  • Syphard AD, Clarke KC, Franklin J (2007a) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landsc Ecol 22(3):431–445

    Google Scholar 

  • Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007b) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402

    PubMed  Google Scholar 

  • Syphard AD, Massada AB, Butsic V, Keeley JE (2013) Land use planning and wildfire: development policies influence future probability of housing loss. PLoS ONE 8(8):e71708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Z, Engel B, Pijanowski B, Lim K (2005) Forecasting land use change and its environmental impact at a watershed scale. J Environ Manage 76(1):35–45

    CAS  PubMed  Google Scholar 

  • Theobald DM (2005) Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol Soc 10(1):32

    Google Scholar 

  • Thompson JR, Foster DR, Scheller RM, Kittredge D (2011) The influence of land use and climate change on forest biomass and composition in Massachusetts, USA. Ecol Appl 21(7):2425–2444

    PubMed  Google Scholar 

  • United Nations Department of Economic and Social Affairs (2013) World population prospects: the 2012 revision, key finding and advance tables. New York

    Google Scholar 

  • Vahidnia MH, Alesheikh AA, Behzadi S, Salehi S (2013) Modeling the spread of spatio-temporal phenomena through the incorporation of ANFIS and genetically controlled cellular automata: a case study on forest fire. Int J Digital Earth 6(1):51–75

    Google Scholar 

  • Valbuena D, Verburg PH, Bregt AK, Ligtenberg A (2010) An agent-based approach to model land-use change at a regional scale. Landscape Ecol 25(2):185–199

    Google Scholar 

  • Veldkamp A, Fresco L (1996) CLUE: a conceptual model to study the conversion of land use and its effects. Ecol Model 85(2):253–270

    Google Scholar 

  • Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landscape Ecol 21(8):1171–1183

    Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manage 30(3):391–405

    PubMed  Google Scholar 

  • Walsh SJ, Entwisle B, Rindfuss RR, Page PH (2006) Spatial simulation modelling of land use/land cover change scenarios in northeastern Thailand: a cellular automata approach. J Land Use Sci 1(1):5–28

    Google Scholar 

  • Wang WJ, He HS, Spetich MA, Shifley SR, Thompson FR III, Fraser JS (2013a) Modeling the effects of harvest alternatives on mitigating oak decline in a central hardwood forest landscape. PLoS ONE 8(6):e66713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WJ, He HS, Spetich MA, Shifley SR, Thompson FR III, Larsen DR, Fraser JS, Yang J (2013b) A large-scale forest landscape model incorporating multi-scale processes and utilizing forest inventory data. Ecosphere 4(9):art106

    Google Scholar 

  • Wang WJ, He HS, Fraser JS, Thompson FR, Shifley SR, Spetich MA (2014) LANDIS PRO: a landscape model that predicts forest composition and structure changes at regional scales. Ecography 37(3):225–229

    Google Scholar 

  • Wassenaar T, Gerber P, Verburg P, Rosales M, Ibrahim M, Steinfeld H (2007) Projecting land use changes in the Neotropics: the geography of pasture expansion into forest. Global Environ Chang 17(1):86–104

    Google Scholar 

  • Watkins RZ, Chen J, Pickens J, Brosofske KD (2003) Effects of forest roads on understory plants in a managed hardwood landscape. Conserv Biol 17(2):411–419

    Google Scholar 

  • Wear DN, Liu R, Foreman JM, Sheffield RM (1999) The effects of population growth on timber management and inventories in Virginia. For Ecol Manage 118(1–3):107–115

    Google Scholar 

  • Wijesekara G, Gupta A, Valeo C, Hasbani J-G, Qiao Y, Delaney P, Marceau D (2012) Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J Hydrol 412:220–232

    Google Scholar 

  • Wimberly MC (2002) Spatial simulation of historical landscape patterns in coastal forests of the Pacific Northwest. Can J For Res 32(8):1316–1328

    Google Scholar 

  • Wimberly MC (2006) species dynamics in disturbed landscapes: when does a shifting habitat mosaic enhance connectivity? Landscape Ecol 21(1):35–46

    Google Scholar 

  • Wimberly MC, Kennedy RSH (2008) Spatially explicit modeling of mixed-severity fire regimes and landscape dynamics. For Ecol Manage 254(3):511–523

    Google Scholar 

  • Wimberly MC, Liu Z (2014) Interactions of climate, fire, and management in future forests of the Pacific Northwest. For Ecol Manag 327:270–279

    Google Scholar 

  • Wimberly MC, Spies TA, Long CJ, Whitlock C (2000) Simulating historical variability in the amount of old forests in the Oregon Coast Range. Conserv Biol 14(1):167–180

    Google Scholar 

  • Wimberly MC, Boyte SP, Gustafson EJ (2012) Understanding landscapes through spatial modeling. In: Stanturf J, Lamb D, Madsen P (eds) Forest landscape restoration: integrating natural and social sciences. Springer, New York, pp 111–130

    Google Scholar 

  • Wittemyer G, Elsen P, Bean WT, Burton AC, Brashares JS (2008) Accelerated human population growth at protected area edges. Science 321(5885):123–126

    CAS  PubMed  Google Scholar 

  • Xi W, Coulson RN, Birt AG, Shang Z-B, Waldron JD, Lafon CW, Cairns DM, Tchakerian MD, Klepzig KD (2009) Review of forest landscape models: types, methods, development and applications. Acta Ecol Sin 29(1):69–78

    Google Scholar 

  • Yang X, Zheng X-Q, Lv L-N (2012) A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol Model 233:11–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Wimberly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wimberly, M.C., Sohl, T.L., Liu, Z., Lamsal, A. (2015). Simulating Forest Landscape Disturbances as Coupled Human and Natural Systems. In: Perera, A., Sturtevant, B., Buse, L. (eds) Simulation Modeling of Forest Landscape Disturbances. Springer, Cham. https://doi.org/10.1007/978-3-319-19809-5_9

Download citation

Publish with us

Policies and ethics