Skip to main content

Unsteady Simulations of Rotor Stator Interactions Using SBP-SAT Schemes: Status and Challenges

  • Conference paper
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 106))

  • 1325 Accesses

Abstract

Recent developments in the SBP-SAT method have made available high-order interpolation operators (Mattsson and Carpenter, SIAM J Sci Comput 32(4):2298–2320, 2010). Such operators allow the coupling of different SBP methods across nonconforming interfaces of multiblock grids while retaining the three fundamental properties of the SBP-SAT method: strict stability, accuracy, and conservation. As these interpolation operators allow a more flexible computational mesh, they are appealing for complex geometries. Moreover, they are well suited for problems involving sliding meshes, like rotor/stator interactions, wind turbines, helicopters, and turbomachinery simulations in general, since sliding interfaces are (almost) always nonconforming. With such applications in mind, this paper presents an accuracy analysis of these interpolation operators when applied to fluid dynamics problems on moving grids. The classical problem of an inviscid vortex transported by a uniform flow is analyzed: the flow is governed by the unsteady Euler equations and the vortex crosses a sliding interface. Furthermore, preliminary studies on a rotor/stator interaction are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Ekici, K.C. Hall, Nonlinear analysis of unsteady flows in multistage turbomachines using harmonic balance. AIAA J. 45(5), 1047–1057 (2007)

    Article  Google Scholar 

  2. K. Mattsson, M. Carpenter, Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32(4), 2298–2320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Nissen, K. Kormann, M. Grandin, K. Virta, Stable difference methods for block-oriented adaptive grids. J. Sci. Comput. 1–26 (2014). doi:10.1007/s10915-014-9969-z

    Google Scholar 

  4. J. Nordström, J. Gong, E. van der Weide, M. Svärd, A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys. 228(24), 9020–9035 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Svärd, On coordinate transformations for Summation-by-Parts operators. J. Sci. Comput. 20, 29–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Svärd, J. Nordström, Review of Summation-By-Parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

  7. Z.J. Wang, et al., High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mark Carpenter for his contribution to this work. His name is not amongst the authors’ due to administrative reasons. Part of the research leading to these results has received funding through the project COPA-GT (European Union’s Seventh Framework Programme FP7/2007–2013, REA grant agreement No. PITN-GA-2011-290042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Giangaspero .

Editor information

Editors and Affiliations

Appendix

Appendix

The interpolation weights for the sixth order operator are (see Fig. 1):

$$\displaystyle{ Sol(P) =\sum _{ i=-2}^{3}w_{ i}Sol(N_{i}),\qquad \alpha = (h - h_{0})/h }$$
$$\displaystyle\begin{array}{rcl} w_{-2}& =& -1/120\quad (\alpha -3)(\alpha -2)\quad (\alpha -1)(\alpha )\quad \quad (1+\alpha ) {}\\ w_{-1}& =& +1/24\quad \ \ (\alpha -3)(\alpha -2)\quad (\alpha -1)(\alpha )\quad \quad (2+\alpha ) {}\\ w_{0}& =& -1/12\quad \ \ (\alpha -3)(\alpha -2)\quad (\alpha -1)(1+\alpha )\ (2+\alpha ) {}\\ w_{+1}& =& +1/12\quad \ \ (\alpha -3)(\alpha -2)\quad \quad \ (\alpha )(1+\alpha )\quad (2+\alpha ) {}\\ w_{+2}& =& -1/24\quad \ \ (\alpha -3)(\alpha -1)\quad \quad \ (\alpha )(1+\alpha )\quad (2+\alpha ) {}\\ w_{+3}& =& +1/120\quad \ (\alpha -2)(\alpha -1)\quad \quad \ (\alpha )(1+\alpha )\quad (2+\alpha ) {}\\ \end{array}$$

The interpolation weights for the eighth order operator are (see Fig. 1):

$$\displaystyle{ Sol(P) =\sum _{ i=-3}^{4}w_{ i}Sol(N_{i}),\qquad \alpha = (h - h_{0})/h }$$
$$\displaystyle\begin{array}{rcl} w_{-3}& =& -1/5040\quad (\alpha -4)(\alpha -3)\quad (\alpha -2)(\alpha -1)\quad \quad \ (\alpha )(\alpha +1)\quad \ \ \ (\alpha +2) {}\\ w_{-2}& =& +1/720\quad \ (\alpha -4)(\alpha -3)\quad (\alpha -2)(\alpha -1)\quad \quad \ (\alpha )(\alpha +1)\quad \ \ \ (\alpha +3) {}\\ w_{-1}& =& -1/240\quad \ (\alpha -4)(\alpha -3)\quad (\alpha -2)(\alpha -1)\quad \quad \ (\alpha )(\alpha +2)\quad \ \ \ (\alpha +3) {}\\ w_{0}& =& +1/144\quad \ (\alpha -4)(\alpha -3)\quad (\alpha -2)(\alpha -1)\quad (\alpha +1)\quad (\alpha +2)\quad (\alpha +3) {}\\ w_{+1}& =& -1/144\quad \ (\alpha -4)(\alpha -3)\quad (\alpha -2)(\alpha )\quad \quad \quad (\alpha +1)\quad (\alpha +2)\quad (\alpha +3) {}\\ w_{+2}& =& +1/240\quad \ (\alpha -4)(\alpha -3)\quad (\alpha -1)(\alpha )\quad \quad \quad (\alpha +1)\quad (\alpha +2)\quad (\alpha +3) {}\\ w_{+3}& =& -1/720\quad \ (\alpha -4)(\alpha -2)\quad (\alpha -1)(\alpha )\quad \quad \quad (\alpha +1)\quad (\alpha +2)\quad (\alpha +3) {}\\ w_{+4}& =& +1/5040\quad (\alpha -3)(\alpha -2)\quad (\alpha -1)(\alpha )\quad \quad \quad (\alpha +1)\quad (\alpha +2)\quad (\alpha +3) {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Giangaspero, G., Almquist, M., Mattsson, K., van der Weide, E. (2015). Unsteady Simulations of Rotor Stator Interactions Using SBP-SAT Schemes: Status and Challenges. In: Kirby, R., Berzins, M., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-19800-2_21

Download citation

Publish with us

Policies and ethics