Skip to main content

Nonlinear Compact Finite-Difference Schemes with Semi-Implicit Time Stepping

  • Conference paper
  • 1325 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 106))

Abstract

Atmospheric flows are characterized by a large range of length scales as well as strong gradients. The accurate simulation of such flows requires numerical algorithms with high spectral resolution, as well as the ability to provide nonoscillatory solutions across regions of high gradients. These flows exhibit a large range of time scales as well—the slowest waves propagate at the flow velocity and the fastest waves propagate at the speed of sound. Time integration with explicit methods are thus inefficient, although algorithms with semi-implicit time integration have been used successfully in past studies. We propose a finite-difference method for atmospheric flows that uses a weighted compact scheme for spatial discretization and implicit-explicit additive Runge-Kutta methods for time integration. We present results for a benchmark atmospheric flow problem and compare our results with existing ones in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Ahmad, J. Lindeman, Euler solutions using flux-based wave decomposition. Int. J. Numer. Methods Fluids 54(1), 47–72 (2007). doi:10.1002/fld.1392

    Article  MathSciNet  MATH  Google Scholar 

  2. U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997). doi:10.1016/S0168-9274(97)00056-1

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National Laboratory (2013)

    Google Scholar 

  4. S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page (2013). http://www.mcs.anl.gov/petsc

  5. D. Ghosh, J.D. Baeder, Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(3), A1678–A1706 (2012). doi:10.1137/110857659

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Ghosh, J.D. Baeder, Weighted non-linear compact schemes for the direct numerical simulation of compressible, turbulent flows. J. Sci. Comput. 61(1), 61–89 (2014). doi:10.1007/s10915-014-9818-0

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Ghosh, E.M. Constantinescu, J. Brown, Efficient implementation of nonlinear compact schemes on massively parallel platforms. SIAM J. Sci. Comput. 37(3), C354–C383 (2015). doi:10.1137/140989261

    Article  MathSciNet  Google Scholar 

  8. D. Ghosh, S. Medida, J.D. Baeder, Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows. AIAA J. 52(9), 1858–1870 (2014). doi:10.2514/1.J052654

    Article  Google Scholar 

  9. F. Giraldo, M. Restelli, M. Läuter, Semi-implicit formulations of the Navier-Stokes equations: application to nonhydrostatic atmospheric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010). doi:10.1137/090775889

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Giraldo, J. Kelly, E. Constantinescu, Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput. 35(5) (2013). doi:10.1137/120876034

    Google Scholar 

  11. G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996). doi:10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  12. C.A. Kennedy, M.H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003). doi:10.1016/S0168-9274(02)00138-1

    Article  MathSciNet  MATH  Google Scholar 

  13. J.B. Klemp, W.C. Skamarock, J. Dudhia, Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Weather Rev. 135, 2897–2913 (2007). doi:10.1175/MWR3440.1

    Article  Google Scholar 

  14. C. Lee, Y. Seo, A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183(2), 438–469 (2002). doi:10.1006/jcph.2002.7201

    Article  MATH  Google Scholar 

  15. S.K. Lele, Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992). doi:10.1016/0021-9991(92)90324-R

    Article  MathSciNet  MATH  Google Scholar 

  16. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  17. X.D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994). doi:10.1006/jcph.1994.1187

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Nagarajan, S.K. Lele, J.H. Ferziger, A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191(2), 392–419 (2003). doi:10.1016/S0021-9991(03)00322-X

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Pareschi, G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1–2), 129–155 (2005). doi:10.1007/BF02728986

    MathSciNet  MATH  Google Scholar 

  20. Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986). doi:10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debojyoti Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghosh, D., Constantinescu, E.M. (2015). Nonlinear Compact Finite-Difference Schemes with Semi-Implicit Time Stepping. In: Kirby, R., Berzins, M., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-19800-2_20

Download citation

Publish with us

Policies and ethics