Skip to main content

A Locally Conservative High-Order Least-Squares Formulation in Curvilinear Coordinates

  • Conference paper
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 106))

  • 1309 Accesses

Abstract

We present a locally conservative spectral least-squares formulation for the scalar diffusion-reaction equation in curvilinear coordinates. Careful selection of a least squares functional and compatible finite dimensional subspaces for the solution space yields the conservation properties. Numerical examples confirm the theoretical properties of the method.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.H. Adler, P.S. Vassilevski, Error analysis for constrained first-order system least-squares finite element methods. SIAM J. Sci. Comput. 38(3), A 1071–A 1088 (2014)

    Google Scholar 

  2. P.B. Bochev, M.D. Gunzburger, A locally conservative least-squares method for Darcy flows. Commun. Numer. Methods Eng. 24, 97–110 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. P.B. Bochev, M.D. Gunzburger, Least-Squares Finite Element Methods (Springer, New York, 2009)

    MATH  Google Scholar 

  4. P.B. Bochev, M.D. Gunzburger, A locally conservative mimetic least-squares finite element method for the Stokes equations, in Proceedings of LSSC 2009, ed. by I. Lirkov, S. Margenov, J. Wasniewski. Springer Lecture Notes in Computer Science, vol. 5910 (Springer, Berlin/Heidelberg, 2009), pp. 637–644

    Google Scholar 

  5. P.B. Bochev, M.I. Gerritsma, A spectral mimetic least-squares method. Comput. Math. Appl. 68, 1480–1502 (2014). http://dx.doi.org/10.1016/j.camwa.2014.09.014

  6. P.B. Bochev, D. Ridzal, Rehabilitation of the lowest-order Raviart-Thomas element on quadrilateral grids. SIAM J. Numer. Anal. 47(1), 487–507 (2008)

    Article  MathSciNet  Google Scholar 

  7. P.B. Bochev, J. Lai, L. Olson, A non-conforming least-squares finite element method for incompressible fluid flow problems. Int. J. Numer. Methods Fluids 72, 375–402 (2013)

    Article  MathSciNet  Google Scholar 

  8. P. Bolton, R.W. Thatcher, On mass conservation in least-squares methods. J. Comput. Phys. 203(1), 287–304 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Bouman, A. Palha, J.J. Kreeft, M.I. Gerritsma, A conservative spectral element method on curvilinear domains, in Spectral and Higher Order Methods for Partial Differential Equations, ed. by J. Hesthaven, R. Rønquist. Springer Lecture Notes in Computational Science and Engineering, vol. 76 (Springer, Berlin/Heidelberg, 2011), pp. 111–119

    Google Scholar 

  10. C.L. Chang, J.J. Nelson, Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM J. Numer. Anal. 34(2), 480–489 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. M.I. Gerritsma, Edge functions for spectral element methods, in Spectral and Higher Order Methods for Partial Differential Equations, ed. by J. Hesthaven, R. Rønquist. Springer Lecture Notes in Computational Science and Engineering, vol. 76 (Springer, Berlin/Heidelberg, 2011), pp. 199–208

    Google Scholar 

  12. J.J. Heys, E. Lee, T.A. Manteuffel, S.F. McCormick, An alternative least-squares formulation for the Navier-Stokes equations with improved mass conservation. J. Comput. Phys. 226(1), 994–1006 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. J.J. Heys, E. Lee, T.A. Manteuffel, S.F. McCormick, J.W. Ruge, Enhanced mass conservation in least-squares methods for Navier-Stokes equations. SIAM J. Sci. Comput. 31(3), 2303–2321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Kattelans, W. Heinrichs, Conservation of mass and momentum of the least-squares spectral element collocation scheme for the Stokes problem. J. Comput. Phys. 228(13), 4649–4664 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. J.J. Kreeft, M.I. Gerritsma, Mixed mimetic spectral element method for Stokes flow: a pointwise divergence-free solution. J. Comput. Phys. 240, 284–309 (2013)

    Article  MathSciNet  Google Scholar 

  16. J.J. Kreeft, A. Palha, M.I. Gerritsma, Mimetic framework on curvilinear quadrilaterals of arbitrary order (2011). arXiv:1111.4304

    Google Scholar 

  17. A. Palha, M.I. Gerritsma, Spectral element approximations of the Hodge-\(\star\) operator in curved elements, in Spectral and Higher Order Methods for Partial Differential Equations, ed. by J. Hesthaven, R. Rønquist. Springer Lecture Notes in Computational Science and Engineering, vol. 76 (Springer, Berlin/Heidelberg, 2011), pp. 283–291

    Google Scholar 

  18. A. Palha, P. Rebelo, R. Hiemstra, J.J. Kreeft, M.I. Gerritsma, Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation for volume forms. J. Comput. Phys. 257, 1394–1422 (2014)

    Article  MathSciNet  Google Scholar 

  19. M.M.J. Proot, M.I. Gerritsma, Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. J. Sci. Comput. 27, 389–401 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gerritsma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gerritsma, M., Bochev, P. (2015). A Locally Conservative High-Order Least-Squares Formulation in Curvilinear Coordinates. In: Kirby, R., Berzins, M., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-19800-2_19

Download citation

Publish with us

Policies and ethics