Skip to main content

Production of Energy—The Second Generation Ethanol and Prospects

  • Chapter
  • First Online:
Book cover Drying and Energy Technologies

Abstract

Bioethanol is mainly produced from food sources, leading to criticisms regarding competition between food and fuels. The study of alternatives raw materials is very important. The reactions of hydrolysis of sisal bagasse were carried out in stainless steel reactor of high pressure. Sugar contents were determined by HPLC. The pretreatment was realized in the highest temperature and lowest acid concentration to obtain the maximum xylose concentration of 24,000 mg/L and maximum glucose concentration of 6700 mg/L. After the prehydrolysis the percentage of cellulose in the sisal bagasse concentrated in 107 % in function of hemicellulose reduction (30 %) and leaching of ashes (40 %). In the hydrolysis, the higher formation of glucose occurred in the highest temperature and highest acid concentration to obtain values of 4000 mg/L. The sisal bagasse has a high quantity of pentose from the hemicellulose. The hydrolyzate liquor can be used for the production of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soccol, C.R., Vandenberghe, L.P.S., Medeiros, A.B.P., Karp, S.G., Buckeridge, M., Ramos, L.P., Pitarelo, A.P.: Bioethanol from lignocelluloses: status. Bioresour. Technol. 101, 4820–4825 (2010)

    Google Scholar 

  2. Bondesson, P.M., Mats, G., Guido, Z.: Ethanol and biogas production after steam pretreatment of corn stover with or without sulphuric acid. Biotechnol. Biofuels 6, 11–16 (2013)

    Google Scholar 

  3. Andrade, R., Ornelas, J., Brandão, W: A situação atual do sisal na Bahia e suas novas possibilidades. Salvador, Rev. Bahia Agrícola. 9, 1 (2011)

    Google Scholar 

  4. Agbor, V.B., Cicek, N., Sparlin, R., Berlin, A., Leven, D.B.: Biomass pretreatment. Biotechnol. Adv. 29(6), 675–685 (2011)

    Article  Google Scholar 

  5. Desvaux, M.: Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29, 741–764 (2005)

    Article  Google Scholar 

  6. Fengel, D., Wegener, G.: Wood Chemistry, Ultrastructure Reactions. Walter de Gruyter, New York (1984)

    Google Scholar 

  7. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003)

    Article  Google Scholar 

  8. Hendricks, A.T., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

    Article  Google Scholar 

  9. Wei, J.H., Song, Y.R.: Recent advances in study of lignin biosynthesis and manipulation. J. Integr. Plant Biol. 43(8), 771–779 (2001)

    Google Scholar 

  10. Da Silva, G.F.: Estratégias para inserção do território do sisal no programa de biodiesel. In: Bahia Análise & Dados. pp. 671–686. SEI, Salvador, BA (2009)

    Google Scholar 

  11. Lima, C.S.S., Conceição, M.M., Silva, F.L.H., Lima, E.E., Conrado, L.S., Leão, D.A.S.: Characterization of acid hydrolysis of sisal. Appl. Energy 102, 254–259 (2013)

    Article  Google Scholar 

  12. Gondim, T.M.S.: Caracterização de Frutos e Sementes de Sisal. Embrapa Algodão Campina Grande, Brazil, Circular técnica 127, 1–6 (2009)

    Google Scholar 

  13. Silva, R.R.O.: Desenvolvimento da cultura do sisal nas regiões semi-áridas do nordeste brasileiro. Embrapa Cnpa, Campina Grande (1994)

    Google Scholar 

  14. Paiva, J.M.F., Frollini, E.: Sugarcane bagasse reinforced phenolic and lignophenolic composites. J. Appl. Polym. Sci. 83, 880–888 (2002)

    Article  Google Scholar 

  15. Brazil, Sistemas de Produção Cultivo do Sisal. Relatório técnico Embrapa Algodão. 5, 1–12 (2006)

    Google Scholar 

  16. Galbe, M., Zacchi, G.: Produção de etanol a partir de materiais lignocelulósicos – Bioetanol de cana-de-açúcar, P e D para produtividade e sustentabilidade. Blucher, São Paulo (2010)

    Google Scholar 

  17. Lynd, L., Van Zyl, W., Mcbride, J., Laser, M.: Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–587 (2005)

    Article  Google Scholar 

  18. Slade, R., Bauen, A., Shah, N.: The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnol. Biofuels 2, 15–19 (2009)

    Article  Google Scholar 

  19. Rubin, E.: Genomics of cellulosic biofuels. Nature 454, 841–846 (2008)

    Article  Google Scholar 

  20. Doe, U.S.: Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC 0095, US Department Energy Office of Science and Office of Energy Efficiency and Renewable Energy (2006). http://genomicscience.energy.gov/biofuels/. Accessed 01 Dec 2014

  21. Shelley, S.: Renewable feedstocks: trading barrels for bushels. Chemical Engineering, Rockville, MD, 116, 16-19 (2009)

    Google Scholar 

  22. Silva, N.L.C., Bastos, H.B., Betancur, G.J.V., Maeda, R.N., Pereira Jr, N.: Produção de etanol de segunda geração a partir de biomassas residuais da indústrais de celulose. In: XVII Simpósio Nacional de Bioprocessos, Natal, Brazil (2009)

    Google Scholar 

  23. NREL USA: Chemical Analysis and Testing Task Laboratory - Conceito de biorrefinaria. Nat. Renew. Energy Lab 12, 216–220 (2013)

    Google Scholar 

  24. Lin, L., Meng, X., Liu, P., Hong, Y., Wu, G., Huang, X., Li, C., Dong, J., Xiao, L., Liu, Z.: Improved catalytic efficiency of Endo-β-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl. Microbiol. Biotechnol. 82, 671–679 (2009)

    Article  Google Scholar 

  25. Shi, Q.Q., Sun, J., Yu, H.L., Li, C.X., Bao, J., Xu, J.H.: Catalytic performance of corn stover hydrolysis by a new isolate Penicillium sp. ECU0913 producing both cellulase and xylanase. Appl. Biochem. Biotechnol. 164, 819–830 (2011)

    Article  Google Scholar 

  26. Knauf, M., Moniruzzaman, M.: Lignocellulosic biomass processing: A perspective. Int. Sugar J. 106, 147–150 (2004)

    Google Scholar 

  27. Rossell, C.E.V.: Conversion of lignocellulose bomass (bagasse and straw) from the sugar-alcohol industry into bioethanol. Industrial perspectives for bioethanol. In: Franco, T. (ed.) São Paulo (2006)

    Google Scholar 

  28. Balat, M.: Production of bioethanol from lignocellulosic materials. Energy Convers. Manag. 52, 858–875 (2011)

    Article  Google Scholar 

  29. Pike, P.W., Sengupta, D., Hertwig, T.A.: Integrating biomass feedstocks into chemical production complexes using new and existing processes. Minerals Processing Research Institute, Louisiana State University, Baton Rouge. Los Angeles (2008)

    Google Scholar 

  30. Pan, X., Gilkes, N., Saddler, J.N.: Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung 60, 398–401 (2006)

    Article  Google Scholar 

  31. Hamelinck, C.N., Van Hooijdonk, G., Faaij, A.P.C.: Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28, 384–410 (2005)

    Article  Google Scholar 

  32. Keshwani, D.R., Cheng, J.J.: Switchgrass for bioethanol and other value-added applications: a review. Bioresour. Technol. 100, 1515–1523 (2009)

    Article  Google Scholar 

  33. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. In: Horwitz, W. (eds.), 16ª edn. Washington (1997)

    Google Scholar 

  34. Xu, F., Sun, J.X., Liu, C.F., Sun, R.C.: Comparative study of alkali- and acidic organic solvent- soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr. Res. 341, 253–261 (2006)

    Article  Google Scholar 

  35. Viera, R.G.P., Rodrigues Filho, G., Assunção, R.M.N., Meireles, C.S., Vieira, J.G., Oliveira, G.S.: Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydr. Polym. 67(2), 182–189 (2007)

    Google Scholar 

  36. Lutz, A.: Métodos Físico-químicos para análises de alimentos. Instituto Adolfo Lutz. Edição IV, São Paulo (2008)

    Google Scholar 

  37. Corradini, E., Teixeira, E.M., Paladin, P.D., Agnelli, J.A., Silva, O.R.R.F., Mattoso, L.H.C.: J. Therm. Anal. Cal. 97, 415–420 (2009)

    Article  Google Scholar 

  38. Kim, H.S., Yang, H.S., Kim, H.J., Lee, B.J., Hwang, T.S.: Thermal properties of agro-flour-filed biodegradable polymer biocomposite. J. Therm. Anal. Cal. 81, 299–306 (2005)

    Article  Google Scholar 

  39. Martin, A.R., Mattoso, L.H.C., Martins, M.A., Silva, O.R.R.F.: Caracterização química e estrutural de fibra de sisal variedade Agave sisalana. Polímeros: Ciência e Tecnologia. 19, 40–46 (2009)

    Google Scholar 

  40. Rodrigues, M.I., Iemma, A.F.: Planejamento de experimentos e otimização de processos, 2ª edn. Campinas, São Paulo (2009)

    Google Scholar 

  41. Lima, E.E.: Estudo das cinéticas de hidrólise ácida e fermentação alcoólica do bagaço do pedúnculo de caju para produção do álcool etílico. Doctorate Thesis, Process Engineering, Federal University of Campina Grande, Paraiba, Brazil, 2012 (In Portuguese)

    Google Scholar 

  42. Lima, F.C.S., Silva, F.L.H., Gomes, J.P., Silva Neto, J.M.: Chemical composition of the cashew apple bagasse and potential use for ethanol production. Adv. Chem. Eng. Sci. 2, 519–523 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) for supporting this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Conceição .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leão, D.A.S. et al. (2016). Production of Energy—The Second Generation Ethanol and Prospects. In: Delgado, J., Barbosa de Lima, A. (eds) Drying and Energy Technologies. Advanced Structured Materials, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19767-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19766-1

  • Online ISBN: 978-3-319-19767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics