Skip to main content

Use of Ultrasound in the Distilled Water Pretreament and Convective Drying of Pineapple

  • Chapter
  • First Online:
Drying and Energy Technologies

Abstract

Convective drying is a time-consuming process. Pretreatments in distilled water assisted with ultrasound, or the application of ultrasound during convective drying itself, could improve the mass transfer. In this work, the influence of pretreatment using distilled water (20 or 40 min at 25 °C) assisted with ultrasound (55.5 W L−1, 40 kHz) on convective drying kinetics (40 and 70 °C, 1 m s−1) of pineapple slices (2.0 cm diameter, 0.5 cm thickness) was studied. The drying was carried out with (31 kWm−3; 21.8 kHz) and without ultrasound application being the kinetics simulated using a diffusive model. The results showed that pretreatment, the use of high drying temperatures, and the application of ultrasound during drying accelerated the drying process. The effective diffusivity identified by the model allowed the quantification of the effects of each of the studied variables on the drying rate of pineapple slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Dw :

Effective diffusivity (m2 s−1)

Mr :

No dimensional moisture content

L:

Half thickness of slabs (m)

Sxy :

Standard deviation of estimation

Sy :

Standard deviation of sample

T:

Time (s)

W:

Moisture content (kg water kg−1 dry solid)

% var:

Explained variance

0:

Initial condition

Eq:

Equilibrium condition

References

  1. AOAC: Official Methods of Analysis AOAC International. 18th edn. (2007)

    Google Scholar 

  2. Aquino, L.P., Ferrua, F.Q., Borges, S.V., Antoniassi, R., Corrêa, J.L.G., Cirillo, M.A.: Influence of pequi drying (Caryocar brasiliense Camb.) on the quality of the oil extracted. Ciênc Tecnol Aliment 29(2), 354–357 (2009). doi:10.1590/S0101-20612009000200018

    Google Scholar 

  3. Azoubel, P.M., Baima, M.A.M., Amorim, M.R., Oliveira, S.S.B.: Effect of ultrasound on banana cv Pacovan drying kinetics. J. Food Eng. 97(2), 194–198 (2010). doi:10.1016/j.jfoodeng.2009.10.009

    Article  Google Scholar 

  4. Bon, J., Rosselló, C., Femenia, A., Eim, V., Simal, S.: Mathematical modeling of drying kinetics for apricots: influence of the external resistance to mass transfer. Dry Technol. 25(11), 1829–1835 (2007). doi:10.1080/07373930701677918

    Article  Google Scholar 

  5. Borges, S.V., Mancini, M.C., Corrêa, J.L.G., Leite, J.B.: Drying kinetics of bananas by natural convection: influence of temperature, shape, blanching and cultivar. Ciênc. Agrotec 35(2), 368–376 (2011). doi:10.1590/S1413-70542011000200019

    Article  Google Scholar 

  6. Borges, S.V., Mancini, M.C., Corrêa, J.L.G., Leite, J.: Drying of banana prata and banana d’agua by forced convection. Ciênc Tecnol Aliment 30(3), 605–612 (2010). doi:10.1590/S0101-20612010000300006

    Article  Google Scholar 

  7. Borges, S.V., Mancini, M.C., Corrêa, J.L.G., Nascimento, D.A.: Drying of pumpkin (Cucurbita moschata L.) slices by natural and forced convection. Ciênc Tecnol Aliment 28, 245–251 (2008). doi:10.1590/S0101-20612008000500037

    Article  Google Scholar 

  8. Cárcel, J.A., García-Pérez, J.V., Benedito, J., Mulet, A.: Food process innovation through new technologies: use of ultrasound. J. Food Eng. 110(2), 200–207 (2012). doi:10.1016/j.jfoodeng.2011.05.038

    Article  Google Scholar 

  9. Cárcel, J.A., García-Pérez, J.V., Riera, E., Mulet, A.: Improvement of convective drying of carrot by applying power ultrasound: influence of mass load density. Dry Technol. 29(2), 174–182 (2011). doi:10.1080/07373937.2010.483032

    Article  Google Scholar 

  10. Cárcel, J.A., García-Pérez, J.V., Riera, E., Mulet, A.: Influence of high-intensity ultrasound on drying kinetics of persimmon. Dry Technol. 25(1), 185–193 (2007). doi:10.1080/07373930601161070

    Article  Google Scholar 

  11. Cárcel, J.A., García-Pérez, J.V., Riera, E., Rosselló, C., Mulet, A.: Drying assisted by ultrasound (Chapter 8) In: Tsotsas E, Mujumdar AS (eds.) Modern Drying Technology, vol. 5, pp. 237–278. Process intensification. Wiley New York (2014). ISBN 978-3-527-31560-4

    Google Scholar 

  12. Chua, K.J., Mujumdar, A.S., Hawlader, M.N.A., Chou, S.K., Ho, J.C.: Convective drying of agricultural products. Effect of continuous and stepwise change in drying air temperature. Dry Technol. 19(8), 1949–1960 (2001). doi:10.1081/DRT-100107282

    Google Scholar 

  13. Corrêa, J.L.G., Braga, A.M.P., Hochheim, M., Silva, M.A.: The Influence of ethanol on the convective drying of unripe, ripe, and overripe bananas. Dry Technol. 30(8), 817–826 (2012). doi:10.1080/07373937.2012.667469

    Article  Google Scholar 

  14. Corrêa, J.L.G., Cacciatore, F.A., Da Silva, Z.E., Arakaki, T.: Osmotic dehydration of West Indian cherry (Malpighia emarginata D.C.)—mass transfer kinetics. Rev. Ciênc Agron 39(3), 403–409 (2008)

    Google Scholar 

  15. Corrêa, J.L.G., Dev, S.R.S., Gariepy, Y., Raghavan, G.S.V.: Drying of pineapple by microwave-vacuum with osmotic pretreatment. Dry Technol. 29(13), 1556–1561 (2011). doi:10.1080/07373937.2011.582558

    Article  Google Scholar 

  16. Corrêa, J.L.G., Ernesto, D.B., Alves, J.G.L.F., Andrade, R.S.: Optimisation of vacuum pulse osmotic dehydration of blanched pumpkin. Int. J. Food Sci. Technol. 49(9), 2008–2014 (2014). doi:10.1111/ijfs.12502

    Article  Google Scholar 

  17. Corrêa, J.L.G., Pereira, L.M., Vieira, G.S., Hubinger, M.D.: Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. J. Food Eng. 96(4), 498–504 (2010). doi:10.1016/j.jfoodeng.2009.08.032

    Article  Google Scholar 

  18. Crank, J.: The mathematics of diffusion, 2nd edn. Claredon Press, Oxford (1975)

    Google Scholar 

  19. De la Fuente, S., Riera, E., Acosta, V.M., Blanco, A., Gallego-Juárez, J.A.: Food drying process by power ultrasound. Ultrasonics 44, e523–e527 (2006). doi:10.1016/j.ultras.2006.05.181

    Article  Google Scholar 

  20. Fante, C., Corrêa, J., Natividade, M., Lima, J., Lima, L.: Drying of plums (Prunus sp, c.v Gulfblaze) treated with KCl in the field and subjected to pulsed vacuum osmotic dehydration. Int. J. Food Sci. Technol. 46(5), 1080–1085 (2011). doi:10.1111/j.1365-2621.2011.02619.x

    Article  Google Scholar 

  21. Fernandes, F.A.N., Linhares, F.E., Rodrigues, S.: Ultrasound as pre-treatment for drying of pineapple. Ultrason. Sonochem. 15(6), 1049–1054 (2008). doi:10.1016/j.ultsonch.2008.03.009

    Article  MATH  Google Scholar 

  22. Fernandes, F.A.N., Rodrigues, S.: Ultrasound as pre-treatment for drying of fruits: dehydration of banana. J. Food Eng. 82(2), 261–267 (2007). doi:10.1016/j.jfoodeng.2007.02.032

    Article  Google Scholar 

  23. Frias, J., Peñas, E., Ullate, M., Vidal-Valverde, C.: Influence of drying by convective air dryer or power ultrasound on the vitamin C and β-carotene content of carrots. J. Agric. Food Chem. 58(19), 10539–10544 (2010). doi:10.1021/jf102797y

    Article  Google Scholar 

  24. Gallego-Juárez, J.A.: Some applications of air-borne power ultrasound to food processing. In: Povey, M.J.W., Mason, T.J. (eds.) Ultrasound in Food Processing, pp. 127–143. Chapman & Hall, London (1998). ISBN 978-0-7514-0429-6

    Google Scholar 

  25. García-Pérez, J.V., Ozuna, C., Ortuño, C., Cárcel, J.A., Mulet, A.: Modeling ultrasonically assisted convective drying of eggplant. Dry Technol. 29(13), 1499–1509 (2011). doi:10.1080/07373937.2011.576321

    Article  Google Scholar 

  26. García-Pérez, J.V., Rosselló, C., Cárcel, J.A., De la Fuente, S., Mulet, A.: Effect of air temperature on convective drying assisted by high power ultrasound. Defect Diffus. Forum 258–260 (2006). doi:10.4028/www.scientific.net/DDF.258-260.563

    Google Scholar 

  27. García-Pérez, J.V., Cárcel, J.A., Benedicto, J., Mulet, A.: Power ultrasound mass transfer enhancement in food drying. Food Bioprod. Process 85, 247–254 (2007). doi:10.1205/fbp07010

    Article  Google Scholar 

  28. Isquierdo, E.P., Borém, F.M., Andrade, E.T., Corrêa, J.L.G., Oliveira, P.D., Alves, G.E.: Drying kinetics and quality of natural coffee. Trans. ASABE 56(3), 1003–1010 (2013)

    Google Scholar 

  29. Jangam, S.V.: An overview of recent developments and some R&D challenges related to drying of foods. Dry Technol. 29(12), 1343–1357 (2011). doi:10.1080/07373937.2011.594378

    Article  Google Scholar 

  30. Kamiloglu, S., Pasli, A.A., Ozcelik, B., Capanoglu, E.: Evaluating the in vitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT Food Sci. Technol. 56(2), 284–289 (2014). doi:10.1016/j.lwt.2013.11.040

    Article  Google Scholar 

  31. Keast, D.R., O’Neil, C.E., Jones, J.M.: Dried fruit consumption is associated with improved diet quality and reduced obesity in US adults: National Health and Nutrition Examination Survey, 1999–2004. Nutr. Res. 31(6), 460–467 (2011). doi:10.1016/j.nutres.2011.05.009

    Article  Google Scholar 

  32. Kundu, J.K., Chun, K.S.: The promise of dried fruits in cancer chemoprevention. Asian Pac. J. Cancer Prev. 15, 3343–3352 (2014). doi:10.7314/APJCP.2014.15.8.3343

    Article  Google Scholar 

  33. Kumar, C., Karim, M.A., Joardder, M.U.H.: Intermittent drying of food products: a critical review. J. Food Eng. 121, 48–57 (2014). doi:10.1016/j.jfoodeng.2013.08.014

    Article  Google Scholar 

  34. Lee, H., Feng, H.: Effect of power ultrasound on food quality. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds.) Ultrasound Technologies for Food and Bioprocessing. Springer, Berlin (2011). ISBN 978-1-4419-7471-6

    Google Scholar 

  35. Marques, G.R., Borges, S.V., Botrel, D.A., Costa, J.M.G., Silva, E.K., Corrêa, J.L.G.: Spray drying of green corn pulp. Dry Technol. 32(7), 861–868 (2014). doi:10.1080/07373937.2013.873452

    Article  Google Scholar 

  36. Megías-Pérez, R., Santos, J.G., Soria, A.C., Villamiel, M., Montilla, A.: Survey of quality indicators in commercial dehydrated fruits. Food Chem. 150, 41–48 (2014). doi:10.1016/j.foodchem.2013.10.141

    Article  Google Scholar 

  37. Mulet, A., Cárcel, J.A., Sanjuán, N., Bon, J.: New food drying technologies: use of ultrasound. Food Sci. Technol. Int. 9, 215–221 (2003)

    Article  Google Scholar 

  38. Muralidhara, H.S., Ensminger, D., Putnam, A.: Acoustic dewatering and drying (low and high frequency): state of the art review. Dry Technol. 3(4), 529–566 (1985). doi:10.1080/07373938508916296

    Article  Google Scholar 

  39. Niamnuy, C., Devahastin, S., Soponronnarit, S.: Some recent advances in microstructural modification and monitoring of foods during drying: a review. J. Food Eng. 123, 148–156 (2014). doi:10.1016/j.jfoodeng.2013.08.026

    Article  Google Scholar 

  40. Novagrim: Fresh Fruit Importer and Vegetable Supplier since 1999 (2014). http://www.novagrim.com/Pages/2000_2011_pineapple_statistics_EN.aspx. Accessed 08 Dec 2014

  41. Nutfruit: International Nut and dried fruit “Global Statistical Review 2007–2012” (2012). http://www.nutfruit.org/glob-stat-review-2011-2012_70816.pdf. Accessed 08 Dec 2014

  42. Ozuna, C., Cárcel, J.A., García-Pérez, J.V., Mulet, A.: Improvement of water transport mechanisms during potato drying by applying ultrasound. J. Sci. Food Agric. 91(14), 2511–2517 (2011). doi:10.1002/jsfa.4344

    Article  Google Scholar 

  43. Ozuna, C., Álvarez-Arenas, T.G., Riega, E., Cárcel, J.A., García-Pérez, J.V.: Influence of material structure on air-borne ultrasonic application in drying. Ultrason. Sonochem. 21(3), 1235–1243 (2014). doi:10.1016/j.ultsonch.2013.12.015

    Article  Google Scholar 

  44. Ozuna, C., Puig, A., Garcia-Perez, J.V., Cárcel, J.A.: Ultrasonically enhanced desalting of cod (Gadus morhua). Mass transport kinetics and structural changes. LWT Food Sci. Technol. 59(1), 130–137 (2014). doi:10.1016/j.lwt.2014.05.062

    Article  Google Scholar 

  45. Ramallo, L.A., Mascheroni, R.H.: Quality evaluation of pineapple fruit during drying process. Food Bioprod. Proc. 90(2), 275–283 (2012). doi:10.1016/j.fbp.2011.06.001

    Article  Google Scholar 

  46. Rodríguez, J., Mulet, A., Bon, J.: Influence of high-intensity ultrasound on drying kinetics in fixed beds of high porosity. J. Food Eng. 127, 93–102 (2014). doi:10.1016/j.jfoodeng.2013.12.002

    Article  Google Scholar 

  47. Sadeghi, M., Mirzabeigi Kesbi, O., Mireei, S.A.: Mass transfer characteristics during convective, microwave and combined microwave-convective drying of lemon slices. J. Sci. Food Agric. 93(3), 471–478 (2013). doi:10.1002/jsfa.5786

    Article  Google Scholar 

  48. Santacatalina, J.V., Rodríguez, O., Simal, S., Cárcel, J.A., Mulet, A., García-Pérez, J.V.: Ultrasonically enhanced low-temperature drying of apple: influence on drying kinetics and antioxidant potential. J. Food Eng. 138, 35–44 (2014). doi:10.1016/j.jfoodeng.2014.04.003

    Article  Google Scholar 

  49. Santos, P.H.S., Silva, M.A.: Kinetics of L-ascorbic acid degradation in pineapple drying under ethanolic atmosphere. Dry Technol. 27(9), 947–954 (2009). doi:10.1080/07373930902901950

    Article  Google Scholar 

  50. Silva, M.A., Corrêa, J.L.G.: Academic research on drying in Brazil 1970–2003. Dry Technol. 23(7), 1345–1359 (2005). doi:10.1081/DRT-200063473

    Article  Google Scholar 

  51. Silva, M.A., Corrêa, J.L.G., Da Silva, Z.E.: Application of inverse methods in the osmotic dehydration of acerola. Int. J. Food Sci. Technol. 45(12), 2477–2484 (2010). doi:10.1111/j.1365-2621.2010.02378.x

    Article  Google Scholar 

  52. Soria, A.C., Villamiel, M.: Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol. 21(7), 323–331 (2010). doi:10.1016/j.tifs.2010.04.003

    Article  Google Scholar 

  53. Viana, A.D., Corrêa, J.L.G., Justus, A.: Optimisation of the pulsed vacuum osmotic dehydration of cladodes of fodder palm. Int. J. Food Sci. Technol. 49(3), 726–732 (2014). doi:10.1111/ijfs.12357

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the economical support of the Ministerio de Economía y Competitividad of Spain, the ERDF (European Regional Development Fund, DPI2012-37466-C03-03), CNPq (National Council for Scientific and Technological Development), CAPES (Coordination for the Improvement of Higher Education Personnel) and FAPEMIG (State of Minas Gerais Research Foundation) in Brazil, and Proyecto EuroTANGO 2 (Erasmus Mundus Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Luiz Gomes Corrêa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corrêa, J.L.G., Rasia, M.C., Garcia-Perez, J.V., Mulet, A., de Jesus Junqueira, J.R., Cárcel, J.A. (2016). Use of Ultrasound in the Distilled Water Pretreament and Convective Drying of Pineapple. In: Delgado, J., Barbosa de Lima, A. (eds) Drying and Energy Technologies. Advanced Structured Materials, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19767-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19766-1

  • Online ISBN: 978-3-319-19767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics