Skip to main content

Optimization of Pulsed Vacuum Osmotic Dehydration of Sliced Tomato

  • Chapter
  • First Online:
Drying and Energy Technologies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 63))

Abstract

The osmotic dehydration (OD) is a treatment that reduces partially the moisture content and the water activity of a food. The use of reduced pressure in the first minutes of an OD is called pulsed vacuum osmotic dehydration (PVOD). In PVOD, the expulsion of occlude gases and the entrance of the solution in the food matrix are induced, with consequently mass transfer improvement. In the present work, the influences of independent variables (temperature (T), pressure of vacuum pulse (PV), sodium chloride concentration [NaCl] and sucrose concentration [suc]) on water loss (WL), solid gain (SG), weight reduction (WR), water activity (aw) and moisture content (U) of tomato slices were studied. The optimum condition obtained had its kinetics tested with three models from the literature. The optimized condition (T 40 °C, PV 56.25 mbar, [NaCl] 7.5 % and [suc] 32.5 %) resulted in the maximum values of WL, and WR (42.2, and 36.1 %, respectively) and minimum SG, aw and U (4.0, 0.948 and 76.5 kg water/100 kg sample, respectively). With respect to the kinetics, the best agreement was obtained with the model that considers variable diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OD:

Osmotic dehydration

PVOD:

Pulsed vacuum osmotic dehydration

T:

Temperature (°C)

PV:

Pressure of vacuum pulse (mbar)

[NaCl]:

Sodium chloride concentration (%)

[suc]:

Sucrose concentration (%)

WL:

Water loss (kg water/100 kg sample)

WR:

Weight reduction (kg/100 kg sample)

SG:

Solid gain (kg solid/100 kg sample)

aw :

Water activity

U:

Moisture content (kg water/100 kg sample)

w:

Weight (kg)

xw :

Water content (%)

xST :

Solid content (%)

X1 :

Independent variable (T)

X2 :

Independent variable (PV)

X3 :

Independent variable ([NaCl])

X4 :

Independent variable ([suc])

z:

Specific directional coordinate (m)

t:

Time (s)

m:

Amount of water or solids (kg)

Deff :

Effective diffusion coefficient (m2 s−1)

L:

Half thickness of sample (m)

i:

Number of series terms

W:

Dimensionless water or solid content

zss :

Mass fraction of soluble solids in the sample (kg/100 kg sample)

yss :

Mass fraction of soluble solids in the osmotic solution (kg/100 kg osmotic solution)

Y:

Drive force

k1 :

Adjusted Peleg’s parameter

k2 :

Adjusted Peleg’s parameter

X:

Water loss or solid gain (kg/100 kg sample)

t1/2 :

Half-life of dehydration/impregnation rate (min)

SE:

Standard error

0:

Initial condition

f:

Final condition

eq:

Equilibrium condition

w:

Water

s:

Solid

HDM:

Hydrodynamic mechanism

∞:

At infinite time

References

  1. Abbasi Souraki, B., Ghavami, M., Tondro, H.: Comparison between continuous and discontinuous method of kinetic evaluation for osmotic dehydration of cherry tomato. J. Food Process. Preserv. 38(6), 2167–2175 (2014)

    Article  Google Scholar 

  2. Al-Harahsheh, M., Al-Muhtaseb, A.H., Magee, T.R.: Microwave drying kinetics of tomato pomace: effect of osmotic dehydration. Chem. Eng. Process. Process Intensif. 48(1), 524–531 (2009)

    Article  Google Scholar 

  3. An, K., Li, H., Zhao, D., et al.: Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Dry. Technol. 31(6), 698–706 (2013)

    Article  Google Scholar 

  4. AOAC-Official Methods of Analysis: Association of Official Analytical Chemists, Washington (2007)

    Google Scholar 

  5. Arballo, J.R., Bambicha, R.R., Campañone, L.A., et al.: Mass transfer kinetics and regressional-desirability optimisation during osmotic dehydration of pumpkin, kiwi and pear. Int. J. Food Sci. Technol. 47(2), 306–314 (2012)

    Article  Google Scholar 

  6. Azarpazhooh, E., Ramaswamy, H.S.: Evaluation of diffusion and Azuara models for mass transfer kinetics during microwave-osmotic dehydration of apples under continuous flow medium-spray conditions. Dry. Technol. 28(1), 57–67 (2010)

    Article  Google Scholar 

  7. Azuara, E., Beristain, C.I., Garcia, H.S.: Development of a mathematical model to predict kinetics of osmotic dehydration. J. Food Sci. Technol. 29, 239–242 (1992)

    Google Scholar 

  8. Barbosa Júnior, J.L., Cordeiro, M.M., Hubinger, M.D.: Mass transfer kinetics and mathematical modelling of the osmotic dehydration of orange-fleshed honeydew melon in corn syrup and sucrose solutions. Int. J. Food Sci. Technol. 48(12), 2463–2473 (2013)

    Article  Google Scholar 

  9. Borges, S.V., Mancini, M.C., Corrêa, J.L.G., et al.: Drying kinetics of bananas by natural convection: influence of temperature, shape, blanching and cultivar. Cienc. Agrotec. 35(8), 368–376 (2011)

    Article  Google Scholar 

  10. Borges, S.V., Mancini, M.C., Corrêa, J.L.G., et al.: Secagem de fatias de abóboras (Curcubit moschata, L.) por convecção natural e forçada. Cienc. Tecnol. Aliment. 28, 245–251 (2008)

    Google Scholar 

  11. Checmarev, G., Casales, M.R., Yeannes, M.I., et al.: Mass transfer modeling during osmotic dehydration of chub mackerel (Scomber japonicus) slices in salt and glycerol solution at different temperatures. J. Food Process. Preserv. 38(4), 1599–1607 (2014)

    Google Scholar 

  12. Chiralt, A., Talens, P.: Physical and chemical changes induced by osmotic dehydration in plant tissues. J. Food Eng. 67(1–2), 167–177 (2005)

    Article  Google Scholar 

  13. Corrêa, J.L.G., Batista, M.B., Raimundo, A., et al.: Analysis of osmotic dehydration variables: influence on tomato (Licopersicon esculentum) drying. Bol. CEPPA 25(2), 315–327 (2007)

    Google Scholar 

  14. Corrêa, J.L.G., Dev, S.R.S., Gariepy, Y., et al.: Drying of pineapple by microwave-vacuum with osmotic pretreatment. Dry. Technol. 29(13), 1556–1561 (2011)

    Article  Google Scholar 

  15. Corrêa, J.L.G., Ernesto, D.B., Alves, J.G.L.F., et al.: Optimisation of vacuum pulse osmotic dehydration of blanched pumpkin. Int. J. Food Sci. Technol. 49(9), 2008–2014 (2014)

    Article  Google Scholar 

  16. Corrêa, J.L.G., Pereira, L.M., Vieira, G.S., et al.: Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. J. Food Eng. 96(4), 498–504 (2010)

    Article  Google Scholar 

  17. Corzo, O., Bracho, N.: Application of Weibull distribution model to describe the vacuum pulse osmotic dehydration of sardine sheets. LWT—Food Sci. Technol. 41(6), 1108–1115 (2008)

    Google Scholar 

  18. Crank, J.: The Mathematics of Diffusion. Carendon press, Oxford (1975)

    Google Scholar 

  19. Czerner, M., Yeannes, M.I.: Brining kinetics of different cuts of anchovy (Engraulis anchoita). Int. J. Food Sci. Technol. 45(10), 2001–2007 (2010)

    Google Scholar 

  20. Deng, Y., Zhao, Y.: Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT—Food Sci. Technol. 41(9), 1575–1585 (2008)

    Google Scholar 

  21. Fante, C., Corrêa, J., Natividade, M., et al.: Drying of plums (Prunus sp, cv Gulfblaze) treated with KCl in the field and subjected to pulsed vacuum osmotic dehydration. Int. J. Food Sci. Technol. 46(5), 1080–1085 (2011)

    Google Scholar 

  22. FAOSTAT: FAO Statistics Division. http://faostat.fao.org/site/339/default.aspx (2011). Accessed 12 Dec 2014

  23. Ferrari, C.C., Sarantópoulos, C.I.G.L., Carmello-Guerreiro, S.M., et al.: Effect of osmotic dehydration and pectin edible coatings on quality and shelf life of fresh-cut melon. Food Bioprocess. Technol. 6(1), 80–91 (2013)

    Article  Google Scholar 

  24. Fito, P., Chiralt, A.: An approach to the modeling of solid food-liquid operations: application to osmotic dehydration. In: Fito, P., Ortega-Rodriguez, E., Barbosa-Canovas, G. (eds.) Food Engineering 2000, pp. 231–252. Chapman and Hall, New York (1977)

    Google Scholar 

  25. Heredia, A., Barrera, C., Andrés, A.: Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. J. Food Eng. 80(1), 111–118 (2007)

    Article  Google Scholar 

  26. Heredia, A., Peinado, I., Barrera, C., et al.: Influence of process variables on colour changes, carotenoids retention and cellular tissue alteration of cherry tomato during osmotic dehydration. J. Food Compos. Anal. 22(4), 285–294 (2009)

    Article  Google Scholar 

  27. Heredia, A., Peinado, I., Rosa, E., et al.: Effect of osmotic pre-treatment and microwave heating on lycopene degradation and isomerization in cherry tomato. Food Chem. 123(1), 92–98 (2010)

    Article  Google Scholar 

  28. Heredia, A., Peinado, I., Rosa, E., et al.: Volatile profile of dehydrated cherry tomato: Influences of osmotic pre-treatment and microwave power. Food Chem. 130(4), 889–895 (2012)

    Article  Google Scholar 

  29. Ito, A.P., Tonon, R.V., Park, K.J., et al.: Influence of process conditions on the mass transfer kinetics of pulsed vacuum osmotically dehydrated mango slices. Dry. Technol. 25(10), 1769–1777 (2007)

    Article  Google Scholar 

  30. Kejing, A., Hui, L., Dandan, Z., et al.: Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Dry. Technol. 31(6), 698–706 (2012)

    Google Scholar 

  31. Li, H., Zhao, C., Guo, Y., et al.: Mass transfer evaluation of ultrasonic osmotic dehydration of cherry tomatoes in sucrose and salt solutions. Int. J. Food Sci. Technol. 47(5), 954–960 (2012)

    Article  Google Scholar 

  32. Mabellini, A., Ohaco, E., Márquez, C., et al.: Calculation of the effective diffusion coefficients in drying of chemical and mechanical pretreated rosehip fruits (Rosa eglanteria L.) with selected sass transfer models. Int. J. Food Eng. 9(4), 481–486 (2013)

    Google Scholar 

  33. Marques, G.R., Borges, S.V., Botrel, D.A., et al.: Spray drying of green corn pulp. Dry. Technol. 32(7), 861–868 (2014)

    Article  Google Scholar 

  34. Mayor, L., Moreira, R., Chenlo, F., et al.: Osmotic dehydration kinetics of pumpkin fruits using ternary solutions of sodium chloride and sucrose. Dry. Technol. 25(10), 1749–1758 (2007)

    Article  Google Scholar 

  35. Mercali, G.D., Marczak, L.D.F., Tessaro, I.C., et al.: Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT—Food Sci. Technol. 4(4), 82–91 (2011)

    Google Scholar 

  36. Mundada, M., Hathan, B.S., Maske, S.: Mass transfer kinetics during osmotic dehydration of pomegranate arils. J. Food Sci. 76(1), 31–39 (2011)

    Article  Google Scholar 

  37. Ochoa-Martınez, C.I., Ramaswamy, H.S., Ayala-Aponte, A.: A comparison of some mathematical models used for the prediction of mass transfer kinetics in osmotic dehydration of fruits. Dry. Technol. 25(10), 1613–1620 (2007)

    Article  Google Scholar 

  38. Ozuna, C., Álvarez-arenas, T.G., Riera, E., et al.: Influence of material structure on air-borne ultrasonic application in drying. Ultrason. Sonochem. 21(3), 1235–1243 (2014)

    Article  Google Scholar 

  39. Palou, E., Lopez-Malo, A., Argaiz, A., et al.: Use of Peleg’s equation to osmotic concentration of papaya. Dry. Technol. 12(4), 965–978 (1994)

    Article  Google Scholar 

  40. Porciuncula, B.D., Zotarelli, M.F., Carciofi, B.A., et al.: Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. J. Food Eng. 119(3), 490–496 (2013)

    Article  Google Scholar 

  41. Ramallo, L.A., Hubinger, M.D., Mascheroni, R.H.: Effect of pulsed vacuum treatment on mass transfer and mechanical properties during osmotic dehydration of pineapple slices. Int. J. Food Eng. 9(4), 403–412 (2013)

    Article  Google Scholar 

  42. Rodrigues, M.I., Iemma, A.F.: Experimental Design and Process Optimization. Casa do Espírito Amigo Fraternidade, Campinas (2012)

    Google Scholar 

  43. Sharma, R., Gupta, A., Abrol, G.S., et al.: Value addition of wild apricot fruits grown in North-West Himalayan regions-a review. J. Food Sci. Technol. 51(11), 2917–2924 (2014)

    Article  Google Scholar 

  44. Shi, J.X., Maguer, L., Wang, L., et al.: Application of osmotic treatment in tomato processing: effect of skin treatments on mass transfer in osmotic dehydration of tomatoes. Food Res. Int. 30(9), 669–674 (1998)

    Article  Google Scholar 

  45. Shi, X.Q., Fito, P., Chiralt, A.: Influence of vacuum treatment on mass transfer during osmotic dehydration of fruits. Food Res. Int. 28(5), 445–454 (1995)

    Article  Google Scholar 

  46. Silva, K.S., Fernandes, M.A., Mauro, M.A.: Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. J. Food Eng. 134, 37–44 (2014)

    Article  Google Scholar 

  47. Silva, M.A.C., Corrêa, J.L.G., Da Silva, Z.E.: Application of inverse methods in the osmotic dehydration of acerola. Int. J. Food Sci. Technol. 45(12), 2477–2484 (2010)

    Article  Google Scholar 

  48. Silva, M.A., Corrêa, J.L.G.: Academic research on drying in Brazil 1970–2003. Dry. Technol. 23(7), 1345–1359 (2005)

    Article  Google Scholar 

  49. Silva, M.A.C., Corrêa, J.L.G., Da Silva, Z.E.: Drying kinetics of west indian cherry: influence of osmotic pretreatment. Bol. CEPPA 29(2), 193–202 (2011)

    Google Scholar 

  50. Silva, M.A.C., Silva, Z.E., Mariani, V.C., et al.: Mass transfer during the osmotic dehydration of West Indian cherry. LWT—Food Sci. Technol. 45(2), 246–252 (2012)

    Google Scholar 

  51. Da Silva, W.P., Amaral, D.S., Duarte, M.E.M., et al.: Description of the osmotic dehydration and convective drying of coconut (Cocos nucifera L.) pieces: a three-dimensional approach. J. Food Eng. 115(1), 121–131 (2013)

    Google Scholar 

  52. Telis, V.R.N., Murari, R.C.B.D.L., Yamashita, F.: Diffusion coefficients during osmotic dehydration of tomatoes in ternary solutions. J. Food Eng. 61(2), 253–259 (2004)

    Article  Google Scholar 

  53. Tonon, R.V., Baroni, A.F., Hubinger, M.D.: Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. J. Food Eng. 82(4), 509–517 (2007)

    Article  Google Scholar 

  54. Udomkun, P., Mahayothee, B., Nagle, M., et al.: Effects of calcium chloride and calcium lactate applications with osmotic pretreatment on physicochemical aspects and consumer acceptances of dried papaya. Int. J. Food Sci. Technol. 49(4), 1122–1131 (2014)

    Article  Google Scholar 

  55. Velickova, E., Winkelhausen, E., Kuzmanova, S.: Physical and sensory properties of ready to eat apple chips produced by osmo-convective drying. J. Food Sci. Technol. 51(12), 3691–3701 (2014)

    Article  Google Scholar 

  56. Viana, A.D., Corrêa, J.L.G., Justus, A.: Optimisation of the pulsed vacuum osmotic dehydration of cladodes of fodder palm. Int. J. Food Sci. Technol. 49(3), 726–732 (2014)

    Article  Google Scholar 

  57. Vieira, G.S., Pereira, L.M., Hubinger, M.D.: Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. Int. J. Food Sci. Technol. 47(1), 132–140 (2012)

    Article  Google Scholar 

  58. Vinha, A.F., Alves, R.C., Barreira, S.V.P., et al.: Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT—Food Sci. Technol. 55(1), 197–202 (2014)

    Google Scholar 

  59. Yadav, A.K., Singh, S.V.: Osmotic dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 51(9), 1654–1673 (2014)

    Article  Google Scholar 

  60. Zhao, D., Zhao, C., Tao, H., et al.: The effect of osmosis pretreatment on hot-air drying and microwave drying characteristics of chili (Capsicum annuum L.) flesh. Int. J. Food Sci. Technol. 48(8), 1589–1595 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the economical support CNPq (National Council for Scientific and Technological Development), FAPEMIG (State of Minas Gerais Research Foundation) and CAPES (Coordination for the Improvement of Higher Education Personnel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. G. Corrêa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corrêa, J.L.G., Dantas Viana, A., de Mendonça, K.S., Justus, A. (2016). Optimization of Pulsed Vacuum Osmotic Dehydration of Sliced Tomato. In: Delgado, J., Barbosa de Lima, A. (eds) Drying and Energy Technologies. Advanced Structured Materials, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19767-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19766-1

  • Online ISBN: 978-3-319-19767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics